Key Management and Adjacency Management for KARP-based Routing Systems

J. William Atwood
Revathi Bangalore Somanatha
Concordia University, Montreal
Contents

- Problem Statement
- Architecture and Definitions
- Overview
- Key Scopes
- Place of KARP Proposals
- Context Identifier assignment
- Adjacency
- Our Design
- Questions
Problem Statement

- Ongoing work on key management
 - RKMP – for unicast pairings
 - MRKMP – for multicast associations on a shared LAN
 - GDOI and GDOI-IKEv2 – examples of a group management protocol

- Ongoing work on adjacency management
 - None that we are aware of
 - We will present some ideas and hope for feedback from the WG members
Definitions

- **Administrative Domain (AD)**
 - Set of routers under a single administration
 - RFC 4375 provides a convenient definition (in the context of Emergency Management)
 - An AD is not bigger than an autonomous system
 - Because we are dealing with Interior Gateway Protocols

- **Domain Controller (DC)**
 - Specific to a particular routing protocol (RP), because “adjacency” may be defined differently for each RP
 - Rules may be the same for different protocols, but stored data will be different
Definitions

- **Group Member (GM)**
 - Any router within the Administrative Domain
 - Note that depending on the keying model in use, we may form smaller “groups”

- **Neighbor**
 - The set of routers that are adjacent to a particular router
Overview

- Three issues for discussion
 - Key scope
 - Context Identifier assignment
 - Adjacency management
Overview..2

- Key scope
 - The subset of the GMs where a key is valid
 - Two extreme examples
 - One key for whole region
 - Different keys for each interface for each sender

- Context Identifier assignment
 - MUST be centralized for multicast inter-router communication
 - SPI assignment for unicast IPsec contexts is receiver-based
 - SPI assignment in IPsec cannot be receiver-based when there are multiple receivers
Overview..2

- Adjacency control
 - If active, MUST be centrally managed
 - Otherwise, the router MAY use (insecure) neighbor discovery

- This implies that there must be a central (domain) controller
 - Our design tries to minimize the need to communicate with this central controller, especially when re-booting

- We are trying to prepare for adjacency control
Key scope: 4+1 cases

- One key for the AD
 - Very large attack surface
 - Key must be determined by the Domain Controller

- One key per shared LAN
 - Smaller attack surface
 - Key can be determined locally
 - By mutual agreement
 - By electing a local GCKS for that LAN
Key scope..2

- One key per sending router
 - Even smaller attack surface
 - Key is determined by sending router, and distributed to its legitimate neighbors

- One key per interface per sending router
 - Smallest attack surface
 - Keys are determined by sending router

- Two keys per pair of routers
 - Unicast IPsec (IKE, IKEv2)
 - Application layer security (TLS)
Example network
Single Key
One Key per LAN
One Key per Sender: One Outgoing Key
One Key per Sender: Five Incoming Keys
Place of KARP proposals

- **RKMP**
 - Used to establish peer-to-peer relationships
 - Assumes a router identification method exists

- **KMPRP**
 - Additional details of exchanges
 - Deals with key rollover
Proposals..2

- **MRKMP**
 - Focuses on the election of a local GCKS for the “One Key per LAN” model
 - Assumes a router identification method exists
 - Deals with router reboots
 - Cannot deal with adjacency management

- **GDOI/GDOI-IKEv2**
 - Does not take into consideration keying groups (key scopes)
 - Does not deal with adjacency management
Context Identifier (CI) assignment

- One key
 - Context Identifier (e.g., SPI) to be used can be defined in the RFC, or by the administrator for the domain

- All other cases
 - Since there will potentially be multiple recipients of the group information, the CIs for each “mini-group” MUST be centrally assigned (i.e., by the Domain Controller)
 - There is probably a very nice graph-coloring problem inside this...
Adjacency

- Each router is assigned an “identity”
 - An FQDN, an arbitrary string, a PKI certificate, etc.

- Adjacency control can take a variety of forms
 - A neighbor is discovered, accept it
 - A neighbor has a valid certificate
 - (it is a valid router, but not necessarily adjacent to me)
 - A neighbor is permitted to be adjacent to me

- The last case MUST be centrally controlled
- The design must not prevent use of the other models (i.e., the disabling of adjacency control)
Our design

- We are exploring a design that
 - allows all of the above key scope models
 - allows us to control adjacency of routers

- Our intention is to specify the actors and the exchanges, and then formally validate the security of these exchanges using AVISPA
Key Management Phases: Between Components

Phase 1a
Phase 2a

Phase 1b

Phase 2b, Phase 2c
Keying Phases: 1

- **Phase 1a**
 - Establish secure path and mutual authenticity between Domain Controller and individual Group Members
 - To be used to distribute information for use by the GM to identify and authenticate its neighbors

- **Phase 1b**
 - Establish secure path and mutual authenticity between adjacent Group Members
 - To be used to distribute parameters that will be used by the GM to send information to its neighbors (i.e., routing protocol control packets)
Phase 1 comments

- A single phase 1 MAY be used for all routing protocols on a particular router (for example, both OSPF and PIM), especially if their concept of “neighbor” is the same.

- Phase 1a is the Phase 1 for IKE for the Domain Controller<->GM exchange.

- Phase 1b is the Phase 1 for IKE for the GM<->GM exchange:
 - It will happen only after the Phase 2a exchange occurs.
Phase 1 comments..2

We may need to find a good way of labeling the “keying group” that is being referenced:

- How do I differentiate between the group on interface “x” and the group on interface “y”?
- Is there a way to describe the interfaces that will be stable, and can be understandable to both the GM and the Domain Controller?
Keying Phases: 2

- **Phase 2a**
 - Allows a GM to establish the identity of its neighbors (or be given the rules for establishing these identities)

- **Phase 2b**
 - The GM contacts these identified neighbors
 - Establishes their authenticity and legitimacy

- **Phase 2c**
 - The GM exchanges the information with its neighbors that will be used to send the routing protocol control packets (e.g., PIM-SM Hello)
Phase 2 comments

- If policy is transferred in Phase 2a, this should be done using standard policy-specification mechanisms
 - We are currently exploring the availability of such mechanisms within the IETF and elsewhere

- Depending on the rules provided in Phase 2a, parts or all of Phase 2b or Phase 2c may be suppressed
Key Management Exchanges: Within GMs

- **KMP** (Key Management Protocol)
 - Join group
 - Initial key
 - Change key

- **RP** (Routing Protocol)
 - Notification of new keys

- **LKS** (Local Key Server)
 - Key Store
 - SA parameters related to TEK

- **SA parameters related to TEK**
Our questions

- Is this a reasonable model for the interactions that will occur?
- Are there things that we have left out that should be included?
- Any other comments?
Our plan

- There are some details of the interactions still to be worked out
- The modeling is in progress
- We expect to report on progress at IETF 84 in Vancouver
Thank You!

Questions?