Smart Object Security
Workshop Report

Jari Arkko
Ericsson

Hannes Tschofenig
NSN

Smart Object Security Workshop

* Held last Friday, March 23rd
* Hosted by Ecole Polytechnique & Thomas Clausen

* OQOrganizers: Hannes Tschofenig, Jari Arkko, Carsten
Bormann, Cullen Jennings, Zach Shelby, Peter Friess,
Antonia Skarmeta, Thomas Clausen

* Participation by submission of a position paper

* 36 papers received
-
ECOLE ﬂﬂ&

EUROPEAN POLYTECHNIQUE Labor
COMMISSION Pari l%wrn d'Informatigue

http://www.lix.polytechnique.fr/hipercom/SmartObjectSecurity/
http://www.tschofenig.priv.at/sos-papers/PositionPapers.htm

Workshop Goals

> We had a gut feeling that we might have
problems with securing smart object networks

> Bring together implementation experience,
application requirements, and researchers
and protocol designers

> What deployment experience is there”? What
credential types are most common? What
Implementation techniques make it possible
to use Internet security technology in these
devices”? What are the challenges?

Requirements and Use Cases
Paul Chilton: Security challenges in the lighting use case

Rudolf van der Berg: Open interfaces, identifier spaces, and economic
challenges

Implementation experience

Carsten Bormann: Light-weight COAP & DTLS implementations
Hannes Tschofenig: TLS and Raw Public Keys Implementation
Mohit Sethi: Public Key Crypto Implementation Experience

Authorization and Role-based Access Control
Richard Barnes: Beyond COMSEC
Jan Janak: On Access Control

Provisioning
Johannes Gilger: Secure pairing
Cullen Jennings: A deployment model

Summary
All slides at http://www.tschofeniqg.priv.at/wp/?p=874

Potential Conclusions

® There are serious attacks, this is not just a matter of kids from
neighbor messing up your home automation

@ A big challenge is setting up security when devices have very
limited user interfaces and the installation is done by, e.g., normal
people in their homes

» Different applications have very different requirements, e.g.,
individual users vs. 1 million device users

* There are examples of using standard Internet security protocols
and algorithms in small devices; it is not clear if new protocol or
algorithm work is needed

* The participants saw many challenges in setting up authorization
and performing enroliment & pairing

* Here in LWIG we will focus mostly on the implementation
experience, see the SAAG presentation for the other issues

Implementation Challenges

> The participants felt that existing algorithms
are usable even for the smart objects

> The participants also felt that existing
protocols are probably usable

- Perhaps with some small extensions or changes in some cases
- Enroliment & pairing is a big question mark

> The participants have done a lot of
implementation work on TLS, DTLS, PANA,
EAP, JOSE, and crypto algorithms

* But more work is needed

Implementation Challenges 2

* |tis important to focus on the system — including all protocols,
authorization, enrollment, configuration, management
* |mplementation size and speed just for the pure crypto or
protocol may often be misleading
* If optimization is needed, on what?
_ Speed of operations
— Memory usage (RAM or ROM)
— Power usage
— Number of messages
— Number of bits sent over the wireless interface
— Time spent while waiting for packets to be received

* Metrics related to communication efficiency are probably more
important than, say, ROM usage

@

DTLS on CoAP (Carsten et al)

Presented one way to use
DTLS with CoAP, along with
numbers about the
Implementation size

Generated a discussion on
what is the right way to use
DTLS with CoAP

See Klaus' presentation here
in LWIG for further
information

Client

Client Hello

Client Hello

Certificate

Client Key Exchange
Certificate Verify
Change Cipher Spec
Finished

Server

Hello Verify Request

Server Hello
Certificate

Server Key Exchange
Certificate Request
Server Hello Done

Optimizing DTLS Implementions
(Carsten et al.)

Code Size | Description
1429 Bytes | SHA-256
992 Bytes | CCM
9812 Bytes | DTLS state machine

TABLE I
CODE FOOTPRINT OF MINIMAL DTLS IMPLEMENTATION

Optimizing DTLS Implementions
(Hannes)

* There is no free lunch

> Lower footprint means fewer functions or
more assumptions

— Example: if you strip your system down to pre-
shared secrets and symmetric crypto, you may
have the smallest footprint, but can the system be
deployed?

> Decide what you really need, leave other
things out

Optimizing DTLS Implementions

(Hannes)
TABLE I

BINARY CODE SIZE FOR CRYPTOGRAPHY SUPPORT FUNCTIONS

Library Code Size
MD3 4,856 bytes
SHA1 2,432 bytes
HMAC 2,928 bytes
RSA 3,984 bytes
Big Integer Implementation | 8,328 bytes
AES 7,096 bytes
RC4 1,496 bytes
Random Number Generator | 4,840 bytes

Optimizing DTLS Implementions

(Hannes)

TAaBLE II

BimaryY CODE SIZE FOR TLS-SPECIFIC CODE

Library Code Iescriptiom

MNarme Size

S 2. 7T6 The =509 related code (x500%.) provides functions

byies o parse centificates, to copy them into the program

internal data structures and to perform cerntificate
related processing functions, like certificate werifi-
cation.

AhMN1 5.512 The ASMI1 library (asad.c) contains the necessary

Parser bytes code o parse ASMN1 data.

Generic 15,928 This library {ffsf.c) is separated from the TLS

TLS bytes client specific code (risf cirrnc) o offer those func-

Library tions that are common with the client and the
server-side implementation. This includes code for
the master secret generation, certificate wvalidation
and identity werification., computing the finished
message, ciphersuite related funcrons, encrypting
and decrypting data. sending and receiving TL3S
messages {(e.g., hnish message, alert messages,
certificare message, session resumption).

TLS 4, SHA The TLS client-specific code {(rsf _cine.c) includes

Client bytes functions that are only executed by the client

Library based on the supported ciphersuites, such as es-
tablishing the connection with the TLS serwver,
sending the ClientHello handshake message, pars-
ing the ServerHello handshake message, process-
ing the ServerHelloDone message, sending the
ClientKeyExchange message, processing the Cer-
tificareReguest message.

[eTCS 2.T7TE The functions defined in os_ports aim o make

W orapper bytes development easier (e.g.. for failure handling with

Func- mernory allecation and wvaricus header definitions)

tions but are not absolutely DecEssary.

DOpensS5L 931 The OpensSSL APL calls are familiar o many

YWorapper bytes programmers and therefore these wrapper functions

Func- are provided to simplify application development.

tions This library (openssi.c) is also not absolutely nec-
ESSary.

Certificate| 4,456 These funcrons defined in {foaderc provide the

Process- bytes ability to load certificates from files (or o use a

i default key as a static data strocture embedded

Func- during compile time), to parse them. and populate

tions corresponding data structures.

ECC and RSA on Arduino

Wiselib 16.0 KB
Relic 29.0 KB

RSA-512

RSA-1024
ECC 128r1
ECC 192k1
NIST K163
NIST K233

AvrCryptolib 320 B
AvrCryptolib 640 B

TinyECC 776 B
TinyECC 1008 B
Relic 2804 B
Relic 3675 B

250's
199.0 s
1.8s
3.4s

0.3S « ~Rsa 10241
18 g+~ ~RsA2048!

Example Application

SSH-like leap of faith:

- no configuration!

- supply PK in mirror registration
- ensure data updates signed by

_ the same key
Delegation:

- Delegate work to a mirror
- no need to stay awake

Application
Software
(CoAP client)

COAP GW
(mirror proxy)

Arduino
sensor
(CoAP client)

Data-object security:

- verifiable by all nodes
- verifiable at any time

- JOSE, SENML, ECC

Possible IETF Work ltems

LWIG:

> Documentation on making power-efficient
and small implementations of DTLS/TLS,
CoAP security, JOSE, crypto algorithms

> Without changing the protocols (just like all
the other work in LWIG)

Elsewhere:
> Explain how to use DTLS with CoAP (CORE)

> Imprinting & enrollment protocols over the
Internet?

	Dia 1
	Dia 2
	Dia 3
	Dia 4
	Dia 5
	Dia 6
	Dia 7
	Dia 8
	Dia 9
	Dia 10
	Dia 11
	Dia 12
	Dia 13
	Dia 14
	Dia 15

