Automatic Multicast Tunneling

draft-ietf-mboned-auto-multicast-12

IETF 83 – Paris, France

Summary

- Document Status
- Document Changes
- Protocol Changes
- Outstanding Issues
- Next Steps

Document Status

- Document reorganized, reformatted, reworded, rewritten and expanded.
- Document distributed for a pre-submission review.
- Document updated to reflect feedback.
- Submitted for publication as Draft 12 in February.

Document Changes

- Primary rationale for changes:
 - To satisfy current IETF Editor guidelines and current practice, with the goal of ensure smooth passage through the RFC approval process.
 - To shift focus of document to that of implementation.
 - To add informative content to provide a context for describing normative requirements.
 - Provide greater detail as required to eliminate ambiguities and and address those areas that were lacking definition.

Document Changes (cont)

- Document split into informative and normative sections.
- High-level Organization:
 - Protocol Overview (Informative)
 - General Architecture
 - General Operation
 - Protocol Description (Normative)
 - Message Formats
 - Gateway Operation
 - Relay Operation

Document Changes (cont)

- Renewed emphasis on AMT as a simple encapsulation protocol for exchanging IGMP/ MLD messages and multicast data generated "outside" of the protocol.
- Group subscription management and multicast forwarding are considered external activities that feed into AMT.
- These activities are governed by the IGMPv3 and MLDv2 specifications.
- The Request->Membership Query exchange is a mechanism for generating general queries.

Relationship to Host IP Stack

Document Changes (cont)

- Treat relay discovery as a distinct feature of the protocol.
 - Use of the discovery mechanism is optional.
 - Gateway implementations may use alternative methods for discovery.
 - Mention possible requirement for source-specific discovery. Use of global anycast address may return relay without multicast connectivity to desired sources.

Protocol Changes

- Backwards compatible.
- Request "Protocol" or "P" flag
 - Indicate to relay whether it should return IGMPv3 or MLDv2 general query in Membership Query message.
- Membership Query "Limit" or "L" flag
 - Notifies gateway that the relay is NOT accepting Membership Update messages from *new* gateway tunnel endpoints.
 - Typically set when anycast address prefix advertisement has been withdrawn (if applicable).

Outstanding Issues

- Source address in IGMP/MLD packet headers.
- UDP Checksums in outer-headers.
- Global Anycast Address Prefix Allocation

Source Address in IGMP/MLD Packets

- Both protocols expect link-local addresses.
- IGMP allows for use of the unspecified (0.0.0.0) address as a source address. Hosts and routers accept these messages.
- MLD Does not! Hosts and routers must ignore MLD packets that carry an unspecified source address.

Link-Local Addresses for IGMP/MLD

- If MLD does not allow use of an unspecified source address, what should gateways and relay insert into the message headers?
- Does implementation rely on existing host IP/ MLD stack for message processing?
 - If no, then just ignore it.
 - If yes, then
 - Spec simply indicates that recipient may need to regenerate message with valid link-local address.
 - Where does that come from? Assign special prefix and addresses for AMT virtual/pseudo interfaces?

UDP Checksum Issue

Overview

- AMT uses UDP encapsulation.
- Relays will use existing functionality to encapsulate multicast packets into Multicast Data messages.
- The encapsulation functionality provided by many platforms cannot generate a valid UDP checksum for the outer UDP header.
- Workaround for IPv4 is to set checksum to zero.
- This will not work for current IPv6 as that protocol specification explicitly prohibits the use of zero-checksums.
- Workaround for IPv6 is to relax requirements.
- Detailed description of problem may be found in:
 - draft-ietf-6man-udpchecksums
 - draft-ietf-6man-udpzero

UDP Checksums and AMT

- Control messages are not a problem.
- Data messages are.
- What impact does this have on AMT?
 - Gateway that relies on host IP stack stack implementation cannot control handling unless API is provided.
 - Gateway that operates below or bypasses the IP stack MUST accept Multicast Data messages with zero UDP checksums.

UDP Checksums and AMT (cont)

- How to detect when zero-checksum packets are dropped?
 - Add some form of Keep-Alive/Beacon functionality. Relay periodically sends packets with and without zero-checksums.

UDP Checksums and AMT (cont)

- Use different discovery address to locate nearest relay that does compute checksums.
 - Result may reduce/eliminate benefits provided by
 - Result may Legace eliminate penetits brosided by SWItch to IPV4 encapsulation if possible.

- Flags may be added to Relay Discovery and Relay Address a mote gate was a gest of Profigoration tectivity h to IPv4.
- Flags may be added to Relay Discovery and Relay Advertisement message to negotiate switch to IPv4.

Next Steps

are required, complete those ASAP (like next week).

- Review changes. Enlist reviewers today.
- Submit Draft 13.

 Start process of advancing the document through the RFC approval process (chairs an AD)