draft-mccann-dmm-flatarch-00.txt

March 26, 2012

www.huawei.com

Outline

- Drawbacks of Existing Hierarchical Tunnel Solutions
- Elements of a Flat Wireless Internet Service Provider
- Mobility Management
- Secure Binding of Assigned Address
- Conclusions

Existing Practice: Hierarchical Tunnels

Typical Wireline Internet Service Provider

Possible Future Wireless ISP

Mobility Management in a Flat Network

- Each BS owns a pool of addresses
- Mobile nodes attach/authenticate, get an address
- Upon attachment/authentication to new BS, send iBGP routing update with NLRI set to the already-assigned address
 - All iBGP routers will set the new BS as the next hop
 - Punches a hole in the routing tables
 - Update is limited in scope if movement is within the same route reflector cluster

IBGP Routing Update

IBGP from an HA

Alternative Solution: Dynamic HA in the AR

- Assign original BS as a dynamic HA
- Send a Registration Request or Binding Update from the new point of attachment
- Inefficient if backhaul is expensive and scarce
- Requires MN to send IP packets at new BS

Issues

- How does new BS learn about the already-assigned address?
- How does new BS guarantee the assignment is authentic?
- Answer: DNS

DNS storage of assigned address(es)

DNS retrieval of assigned address(es) during handoff

Authentication without RADIUS/Diameter

- Round-trips to the home network add to latency of handover
- Leverage DANE work putting public keys into DNS
 - Public keys can be cached
- Re-run public key based authentication on every new attachment

Dynamic Re-Binding

- During quiet periods, MN should re-run DHCP to get a new address that is local to the current BS
- MN must keep track of which connections are using which addresses
 - Keep renewing the lease of used addresses (unicast DHCPREQUEST)
 - Remotely from current BS: the BS must add the Agent Remote ID
 - Garbage collect unused addresses & remove from Home DNS entry

Data Point: BGP Pass-through Time

- How fast does a BGP Update propagate through the network?
- See "Measuring BGP Pass-Through Times" by Feldman, Kong,
 Maennel, and Tudor
 - http://www.net.t-labs.tu-berlin.de/papers/FKMT-MBPT-04.pdf
- Time for a BGP Update to be processed and resulting Updates to be propagated (MRAI disabled):
 - Best case: 2.4 ms
 - Worst case: 400 ms
 - Variation due to 200ms polling interval in a particular BGP implementation

Conclusions

- Existing tunnel hierarchies are inefficient and unnecessary
- BGP is used in typical wireline ISP environments
- BGP Updates can be used to handle mobility events
 - Must limit the time and scope of mobility for scalability
 - MNs can re-bind to new IP addresses during periods of inactivity
 - Performance studies needed
- DNS names can be used as node identifiers
 - Leverage DNS as a mapping database to find current IP addresses
 - Leverage DANE for storage of public key material
 - Enhance authentication to remove AAA round-trips and eliminate transport of symmetric secret key material

