Receiver-Driven Multicast RSVP-TE Requirements

draft-jacquenet-mpls-rd-p2mp-te-requirements-01

C. Jacquenet (christian.jacquenet@orange.com)
Q. Zhao (quintin.zhao@huawei.com)
RFC 4875 Design

• Assumes the root already has a priori knowledge about the leaves before computing the P2MP tree
 – Often addressed by static configuration
 – May use BGP Auto-Discovery mechanism in some environments

• Loses the dynamics of receiver-initiated multicast distribution trees

• Does not cover MP2MP tree computation
 – *E.g.*, for large scale, QoS-demanding interactive e-learning services
Best of Breed

• Dynamics of IP multicast
 – Receiver-driven scheme allows for finer tree design, computation and maintenance
 • Key for bandwidth optimization in the access

• Robustness of MPLS TE
 – RSVP-based paradigm yields hard guarantees
 • Down to the first IP node
 – Protection toolkit (PLR design for both link and node protection purposes)

• Agility of multicast-inferred AAA
 – Dynamic policy (QoS, security) enforcement scheme
MP2MP Scenario

- Each leaf needs to learn about the others first, e.g.:
 - BGP Auto-Discovery may be used by PE4 and PE5 leaves to notify PE2 (root) and then trigger tree computation
- A P2MP tree is then computed by each leaf
 - Hence raising scalability issues
Requirements

• Requirements of RFC 4461 still apply
• Receiver-Driven MPLS tree structures introduce additional requirements
 – Tree computation relies upon a collection of label states
 • Upstream label states should be merged with downstream states for MP2MP trees
 – Covers MP2MP tree computation
 – Support of dynamic leaf Graft/Prune operation
 – State maintenance operation for P routers should be independent of the number of receivers and source/receivers (MP2MP)
 – Intermediate routers need to compute a route towards the root or use explicit object for next hop resolution
In-Band Signaling

• mRSVP TE object should be used by leaf routers to signal multicast stream information
 – mRSVP TE object is parsed by root to compute the tree and forward traffic to receivers accordingly
 – P routers do not need to parse mRSVP TE object

• Aggregation of several multicast flows bound to a given RD tree structure is encouraged
 – To facilitate LSP design and operation
Overview

- Receiver triggers RSVP_PATH towards the source
 - By means of IGMP/MLD messages processed by access routers (R3/R4)
- RSVP_RESV messages are sent back from the root
 - R1 connected to the source
- Label allocation is done prior to sending PATH messages
- RSVP is used as per procedure defined in RFC 4875
 - But RSVP machinery is triggered by leaf routers instead of ingress router
Comments?