NVO3 Requirements for Tunneling

Igor Gashinsky and Bruce Davie

IETF
Why tunnels?

- Manage overlapping addresses between multiple tenants
- Decouple virtual **topology** provided by tunnels from physical network topology
- Decouple virtual **network service** from physical network (e.g. provide an L2 service over an L3 fabric)
- Support VM mobility independent of the physical network
- Support larger numbers of virtual networks (vs. VLANs for example)
- Reduce state requirements for physical network (e.g. MAC addresses)
- Because all CS problems can be solved with another level of indirection
We have a horse in this race, but we’ve tried hard to be objective.

AFAICT, no existing protocol meets all the requirements in this presentation.

We’ve put a lot of emphasis on compatibility with existing HW – others may differ on the importance of that.
Requirements Overview

- Control Plane independence
- Backwards compatibility
 - Lots of installed devices & services to consider
- Context identification
Control Plane Independence

- Data planes tend to get baked into HW, control planes evolve
- Best not to specify control plane as part of tunnel encaps
Backwards Compatibility (1)

- With switches and routers
 - IP-based encaps likely to be most compatible
 - ECMP – mostly looks at IP src/dst and TCP or UDP ports, so make use of that

- With NICs
 - Most tunneling methods break TSO, causing major performance hit for host-terminated tunnels
 - For current generation NICs, only way to keep TSO is to completely match TCP header – see draft-davie-stt-01
Middle Boxes
- Should be possible to transit them
- They may need to inspect payload (e.g. for stateful firewall)
- Stream or Frame Reassembly may be needed for L4/L7 services

Hardware or software-based “NV Edge”
- “Edge” may be in hypervisor, physical switch, appliance etc.

With WAN services (e.g. Public IP, L3VPNs, VPLS)
- These services carry IP or Ethernet, so compatible with IP-based encaps
Context Identification

- As packets exit from tunnels, need to deliver them to the right “context”
 - A context may be simply a “tenant”, or a “virtual network instance” but these are special cases
 - Can also use it for other metadata (state versioning, distributed lookup, etc.)
 - Note that L3VPNs don’t have any single field that is the VPN-ID, and that’s a good thing
 - Allows much more complex notions of VPN membership than “a member of exactly one VPN”
 - An opaque context ID with control-plane defined semantics also supports control-plane independence goal