
The PPSP Peer Protocol (PPSPP)

Arno Bakker, Victor Grishchenko, Riccardo Petrocco,
Johan Pouwelse

P2P-Next / Delft University of Technology

Arno Bakker, Delft University of Technology, IETF 83 PPSP WG 28.03.2012, Paris

1

Refresh: PPSPP messages

• Basic unit of communication: Message

 HANDSHAKE

 HAVE: convey chunk availability

 HINT: request chunks

 DATA: actual chunk

 HASH: MDCs to enable integrity verification

 …

• Messages are multiplexed together when sent over the wire.

Arno Bakker, Delft University of Technology, IETF 83 PPSP WG 28.03.2012, Paris

2

• Peer A and B both have some chunks

• Note: low latency, data transfer already in 3rd datagram.

Example PPSPP on the wire

A B

HANDSHAKE + HAVE

HANDSHAKE + HAVE + HINT

HINT + HASH + DATA

Arno Bakker, Delft University of Technology, IETF 83 PPSP WG 28.03.2012, Paris

HINT + HASH + DATA

3

PPSPP in detail

• Common set of messages across transports (UDP, RTP, TCP)

• Novel method of content integrity protection:

 Merkle hash trees

• Novel method of chunk addressing:

 Bins

 = Address range of chunks with single integer

Arno Bakker, Delft University of Technology, IETF 83 PPSP WG 28.03.2012, Paris

4

WG Item Status

• Identified 34 issues in post-Taipei discussion

• 10 simple textual ones resolved in -01

• Posted proposals for:

 10+13: Multiple content integrity and chunk addressing
schemes

 26: Security of the handshake procedure

 17+20: Definition and security of Peer-Address Exchange
(PEX)

• Identified new open issues from Requirements doc

• Posted security analysis for PPSPP messages

• 2 people in total responded on 1 proposal

Arno Bakker, Delft University of Technology, IETF 83 PPSP WG 28.03.2012, Paris

5

Proposal 10+13

• “Multiple content integrity and chunk addressing schemes”

• Chunk addressing:

 Scheme is extra metadata with swarm ID.

 HINT+HAVE+… carry opaque “chunk spec”.

 PPSPP SHOULD implement bin numbering.

• Integrity protection:

 Scheme is extra metadata with swarm ID.

 Or: Sender describes content integrity protection scheme in
HANDSHAKE. Validity clear on first DATA message.

 HASH message renamed to generic INTEGRITY.

 PPSPP SHOULD implement Merkle Hash trees.

Arno Bakker, Delft University of Technology, IETF 83 PPSP WG 28.03.2012, Paris

6

Proposal 26

• “Security of the handshake procedure”

• Attacks:

 DoS amplification: PPSPP peer amplifies traffic

 DoS flood: state buildup at PPSPP peer

• Existing mechanism suffices

 Clarify: no updates to unacknowledged peer.

 Add: peer must reply immediately to HANDSHAKE, short
timeout on state.

• Or: Copy RFC5971

 No state till return routability check.

 Adds latency.

Arno Bakker, Delft University of Technology, IETF 83 PPSP WG 28.03.2012, Paris

7

PPSPP handshake procedure

A B

chan0 + HANDSHAKE(chanA) + …

chanA + HANDSHAKE(chanB) + …

chanB + …

Arno Bakker, Delft University of Technology, IETF 83 PPSP WG 28.03.2012, Paris

8

Proposal 17+20

• “Definition and security of Peer-Address Exchange (PEX)”

• Rewrite definition:

 PEX MUST contain addresses you exchanged messages with in
the last 60 seconds.

• Security attacks:

 Amplification: peer T causes peer A to connect to B1…n

 Eclipse 1: Isolate single injector in live streaming

 Eclipse 2: Isolate specific consumer peer

Arno Bakker, Delft University of Technology, IETF 83 PPSP WG 28.03.2012, Paris

9

Protection against PEX Amplification attack

• Introduce membership certificates:

 “peer A at address ipA+portA part of swarm S at time T”

 Digitally signed

• Usage:

 A sends cert to peer B during/after handshake.

 B checks if sig OK, swarm OK and liveliness OK.

 B puts cert in PEX reply to others.

• Different certification schemes:

 Generic CA: hands out basic certificates, peer creates
membership certs (CA -> basic -> membership trust chain)

 Tracker as CA: creates membership cert on/after JOIN.

Arno Bakker, Delft University of Technology, IETF 83 PPSP WG 28.03.2012, Paris

10

Protection against PEX Eclipse attacks

• Assumption: tracker returns a true random sample of the actual
swarm membership.

• Live injector protected by:

 Initiate percentage of connections itself

 Disabling PEX

 Or: PEX, but get percentage of peers from trusted tracker

• Protect consumer peer in same way:

 Go to tracker if bad service

• Alternative PEX protection: PuppetCast

 Set of peers in PEX reply externally controlled.

Arno Bakker, Delft University of Technology, IETF 83 PPSP WG 28.03.2012, Paris

11

New Issues from PPSP Requirements

• REQ-8: QoS

 More support needed? New issue #35

• PP.REQ-3: Get peers from peer

 Satisfied by PEX

• PP.REQ-6: Peer status reporting

 New issue #36

• SEC.REQ-1: Closed Swarms

 New issue #37, propose P2P-Next solution

• SEC.REQ-2: Content confidentiality

 Supported, add text (new issue#38)

Arno Bakker, Delft University of Technology, IETF 83 PPSP WG 28.03.2012, Paris

12

New Issues from PPSP Requirements (cont’d)

• SEC.REQ-3: Encrypt peer links.

 IPsec or DTLS, add text (new issue #39)

• SEC.REQ-4: Limit bad peer damage

 Most attacks covered, will discuss (new issue #40)

• SEC.REQ-5: Exclude bad peers

 Via content integrity protection, add text (new issue #41)

• SEC.REQ-6: Bad peers exhaust resources

 Need PEX protection

 Limit upload per peer

 (Handshake procedure protects)

 Add text (new issue #42)

Arno Bakker, Delft University of Technology, IETF 83 PPSP WG 28.03.2012, Paris

13

New Issues from PPSP Requirements (cont’d)

• SEC.REQ-7: Decentralized tracking

 Need PEX protection == issue #20

• SEC.REQ-9: Content integrity

 Covered, add ref to Chung Kei Wong and Simon S. Lam for live
(new issue #43)

Arno Bakker, Delft University of Technology, IETF 83 PPSP WG 28.03.2012, Paris

14

Threat Analysis: HANDSHAKE

• Secured against DoS amplification attacks as proposed in mail dd.
Jan 25th.

• Threat 1.1: Eclipse attack where peers T1..TN fill all connection
slots of A by initiating the connection to A.

 Solution: Don't accept all incoming connections, initiate e.g.
50% yourself (see also SEC.REQ-6 discussion).

Arno Bakker, Delft University of Technology, IETF 83 PPSP WG 28.03.2012, Paris

15

Threat Analysis: HAVE

• Threat 2.1: Malicious peer T can claim to have content which it
hasn't. Subsequently T won't correspond to requests.

 Solution: peer A will consider T to be a slow peer and not ask
it again.

• Threat 2.2: Malicious peer T can claim not to have content. Hence
it won't contribute.

 Solution: Peer+chunk selection policies external to the
protocol will implement fairness and provide sharing
incentives. Perhaps we should add CHOKE/UNCHOKE
messages (Issue #4) as an extra mechanism for these policies
to use.

Arno Bakker, Delft University of Technology, IETF 83 PPSP WG 28.03.2012, Paris

16

Threat Analysis: ACK

• Threat 3.1: peer T acks wrong chunks.

 Solution: peer A will detect inconsistencies with what it sent.

• Threat 3.2: peer T modifies timestamp in ACK to peer A used for
time-based congestion control.

 Solution: TODO. Could peer T use it to fake there is no
congestion when in fact there is, causing A to send more data
than it should?

Arno Bakker, Delft University of Technology, IETF 83 PPSP WG 28.03.2012, Paris

17

Threat Analysis: DATA

• Threat 4.1: peer T sending bogus chunks.

 Solution: The content integrity protection scheme defends
against this.

• Threat 4.2: peer T sends peer A unrequested chunks.

 To protect against this threat we would need network-level
DoS prevention.

Arno Bakker, Delft University of Technology, IETF 83 PPSP WG 28.03.2012, Paris

18

Threat Analysis: HASH

• Threat 5.1: Amplifcation attack: peer T sends HASHes, peer A
checks hashes, spending CPU.

 Solution: If the hashes don't check out A will stop asking T
because of the atomic datagram principle and the content
integrity protection.

Arno Bakker, Delft University of Technology, IETF 83 PPSP WG 28.03.2012, Paris

19

Threat Analysis: HINT

• Threat 6.1: peer T could request lots from A, leaving A without
resources for others.

 Solution: Limit upload bandwidth per peer (see also SEC.REQ-
6 discussion).

Arno Bakker, Delft University of Technology, IETF 83 PPSP WG 28.03.2012, Paris

20

Threat Analysis: PEX_RES

• See above (mail dd. Feb 14th)

Arno Bakker, Delft University of Technology, IETF 83 PPSP WG 28.03.2012, Paris

21

Threat Analysis: Unsollicited requests

• Threat: peer T could send a spoofed PEX_REQ or HINT from peer
B to peer A, causing A to send a PEX_RES/DATA to B.

 Solution: the message from peer T won't be accepted unless T
does a handshake first (see mail dd. Jan 25th.), in which case
the reply goes to T, not victim B.

Arno Bakker, Delft University of Technology, IETF 83 PPSP WG 28.03.2012, Paris

22

Summary

• No show stoppers!

• Need more feedback!

Arno Bakker, Delft University of Technology, IETF 83 PPSP WG 28.03.2012, Paris

23

PPSPP Implementation

Arno Bakker

Riccardo Petrocco

Richard Marsh

et al.

Arno Bakker, Delft University of Technology, IETF 83 PPSP WG 28.03.2012, Paris

24

Introduction

• Swift implemented in C++

• Libevent2 library for socket communication

• UDP

+ Multiplexing: Many swarms on same socket

+ IETF LEDBAT congestion control

• Video-on-demand + live prototype

• Source code:

 www.libswift.org (GitHub)

 LGPL License

Arno Bakker, Delft University of Technology, IETF 83 PPSP WG 28.03.2012, Paris

25

Arno Bakker, Delft University of Technology, IETF 83 PPSP WG 28.03.2012, Paris

26

Summary

• More info, sources, binaries:

 www.libswift.org

• Acknowledgements

 European Community’s Seventh Framework Programme in the
P2P-Next project under grant agreement no 216217.

Arno Bakker, Delft University of Technology, IETF 83 PPSP WG 28.03.2012, Paris

27

Questions?

Arno Bakker (arno@cs.vu.nl)

Riccardo Petrocco <r.petrocco@gmail.com>

Johan Pouwelse (peer2peer@gmail.com)

Arno Bakker, Delft University of Technology, IETF 83 PPSP WG 28.03.2012, Paris

28

Extra slides

Arno Bakker, Delft University of Technology, IETF 83 PPSP WG 28.03.2012, Paris

29

Status

• Implemented in C++

 Video-on-demand over UDP

• Running in Firefox:

 <video src=“swift://…

 Via 100 KB plugin

 Hooks on en.wikipedia.org

• Running on:

 iPad

 Android

 set-top box

• Works with P2P caches

Arno Bakker, Delft University of Technology, IETF 83 PPSP WG 28.03.2012, Paris

30

The Internet today

• Dominant traffic is content dissemination:

 One-to-many

− Download (ftp)

− Video-on-demand (YouTube)

− Live (Akamai, Octoshape, PPLive)

• Dominant protocol was designed for one-to-one:

 TCP

Arno Bakker, Delft University of Technology, IETF 83 PPSP WG 28.03.2012, Paris

31

What’s wrong with TCP?

• TCP’s functionality not crucial for content dissemination:

 Don’t need Reliable delivery

 Don’t need In-order delivery

• High per-connection memory footprint

 Aim for many connections to find quick peers

• Complex NAT traversal

• Fixed congestion control algorithms

• I.e. not designed for “The Cloud”

Arno Bakker, Delft University of Technology, IETF 83 PPSP WG 28.03.2012, Paris

32

Swift design goals

1. Generic protocol that covers 3 use cases (vod, live, dl)

2. Have short prebuffering times

3. Be extensible:

 Different congestion control algorithms (LEDBAT)

 Different reciprocity algorithms (tit4tat, Give-to-Get)

 Different peer-discovery schemes (tracker, DHT)

4. Can be carried over different transport protocols (UDP,TCP,RTP
profile)

5. Traverse NATs transparently

6. Low footprint

Arno Bakker, Delft University of Technology, IETF 83 PPSP WG 28.03.2012, Paris

33

• Peer A and B both have some chunks

• Are receiving chunks from others in parallel

• Note: Chunk availability always up-to-date by pushing

Swift on the wire: Example 2

A B

HANDSHAKE + HAVE

HANDSHAKE + HAVE +HINT

HAVE + HINT + HASH + DATA

Arno Bakker, Delft University of Technology, IETF 83 PPSP WG 28.03.2012, Paris

HAVE + HINT + HASH + DATA

34

Chunk availability and Rarest first

Arno Bakker, Delft University of Technology, IETF 83 PPSP WG 28.03.2012, Paris

• Rarest-first is common element in chunk selection policies:

 Peers download chunk that least peers have

− Low supply

 Peers can upload that to many peers

− High demand

• Result: Upload capacity of peers exploited !

• Requires:

 Peers have good view of neighbours’ chunk availability

 Hence: Swift pushes HAVE messages

35

BitTorrent basics

• Content divided into fixed-sized pieces: 0..N

• Computers exchange pieces following economic model

 Rarest-first (Low Supply -> High demand)

 Not in order!

• Bootstrap and security data in .torrent file:

 Address of peer tracker

 Cryptographic hash of every piece (integrity checking)

Arno Bakker, Delft University of Technology, IETF 83 PPSP WG 28.03.2012, Paris

0 N

36

P2P-Next video-on-demand

• Divide set of needed pieces into:

 High: always, in-order

 Mid: if no high, rarest-first

 Low: if no high or mid, rarest first

• Use new Give-to-Get algorithm for uploading

 Upload to best forwarders

Arno Bakker, Delft University of Technology, IETF 83 PPSP WG 28.03.2012, Paris

0 NP HI MID LOW

Got Still needed

37

• Peer A is starting leecher, peer B is seeder

• Note: Receiver controls flow

Swift on the wire: Example 3

A B

HANDSHAKE

HANDSHAKE + HAVE

HINT

Arno Bakker, Delft University of Technology, IETF 83 PPSP WG 28.03.2012, Paris

HASH + DATA
HASH + DATA

38

• Peer A is leecher, peer B is seeder,

• Peer A requests peer list

Swift on the wire: Example 4

A B

HANDSHAKE

HANDSHAKE + HAVE

HINT + PEX_REQ

Arno Bakker, Delft University of Technology, IETF 83 PPSP WG 28.03.2012, Paris

PEX_ADD + HASH + DATA

39

Swift integrity checking

• Content identified by single root hash

• Root hash is top hash in a Merkle hash tree

0 1 2 3 4 5 6

root hash

content chunk

hash filler hash

Arno Bakker, Delft University of Technology, IETF 83 PPSP WG 28.03.2012, Paris

40

Swift integrity checking (cont’d)

Arno Bakker, Delft University of Technology, IETF 83 PPSP WG 28.03.2012, Paris

• Atomic datagram principle:

 Transmit chunk with uncle hashes

 Allows independent verification of each datagram

 Root hash + some peer addresses enough to start download!

0 2

1

4 6

5

3

8 10

9

12 14

13

11

7

0 1 2 3 4 5 6

received

41

Swift chunk IDs and live trees

• Nodes in tree denote chunk ranges: bins

 Used for scalable acknowledgements + low footprint

• Dynamically growing & pruned trees for live

0 2

1

4 6

5

8 10

9

12 14

13

7

0 1 2 3 4 5 6

bin number

Arno Bakker, Delft University of Technology, IETF 83 PPSP WG 28.03.2012, Paris

3 11

42

Swift Peak Hashes

• Used to automatically, and securely calculate content size

• Don’t need size to start download (i.e., metadata is just root
hash)

0 2

1

4 6

5

8 10

9

12 14

13

7

0 1 2 3 4 5 6

peak hash

Arno Bakker, Delft University of Technology, IETF 83 PPSP WG 28.03.2012, Paris

3 11

43

Transport protocols

• Swift over UDP

 Implemented

• Swift as RTP profile (charter hint)

Arno Bakker, Delft University of Technology, IETF 83 PPSP WG 28.03.2012, Paris

44

Swift over UDP

Arno Bakker, Delft University of Technology, IETF 83 PPSP WG 28.03.2012, Paris

• Datagram consists of channel ID + multiple messages

 Channels allow different swarms on single UDP port

• Message is fixed length, first byte message ID

• IETF LEDBAT congestion control

• Simple NAT traversal via protocol itself

45

• cf. Secure Real-time Transport Protocol (SRTP)

• “layer residing between RTP app and transport layer”

• Chunk = RTP packet

Swift as RTP profile

V P X CC M PT Sequence Number
Timestamp
SSRC Identifier
Extension ID Extension header length
Data
…
HINT+HAVE+HASH
Length of swift messages

Arno Bakker, Delft University of Technology, IETF 83 PPSP WG 28.03.2012, Paris

46

Swift as RTP profile (cont’d)

• RTP header protected against malicious modification

• Merkle tree can handle variable-sized chunks (if req)

• Advantages of UDP

Arno Bakker, Delft University of Technology, IETF 83 PPSP WG 28.03.2012, Paris

0 1 2 3 4 5 6

47

