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What are we trying to accomplish?

• Allow Alice and Bob to have a secure call

– Authenticated with their identity providers

– On any site

∗ Even untrusted/partially trusted ones

• Advantages

– Use one identity on any calling site

– Security against active attack by calling site

– Support for federated cases
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Terminology

Authenticating Party (AP): The entity which is trying to establish

its identity.

Identity Provider (IdP): The entity which is vouching for the AP’s

identity.

Relying Party (RP): The entity which is trying to verify the AP’s

identity.
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Types of IdP

Authoritative: Attests for identities within their own namespace

– Often multiple Authoritatives IdPs exist with different scopes

– Examples: DNSSEC, RFC 4474, Facebook Connect (for the

Facebook ID)

Third-party : Attests for identities in a name-space they don’t

control

– Often multiple Third-Party IdPs share the same space

– Can attest to real-world identities

– Examples: SSL/TLS certificates, the State of California

(driver’s licenses)
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Authoritative vs. Third-Party IdPs: Trust

Relationship

• No need to explicitly trust authoritative IdPs

– ekr@example.com is whoever example.com says it is

– The problem is authenticating example.com

• Third-party IdPs need to be explicitly trusted

– Example: how do I know GoDaddy is a legitimate CA?

– Answer: the browser manufacturer vetted them

– They are allowed to attest to any domain name

– Inherently problematic as discussed at plenary
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User Relationships with IdPs

• Authenticating Party

– Has some account with the IdP

– May have established their identity

∗ Especially for third-party IdPs

– Can authenticate to the IdP in the future (e.g., with a

password)

• Relying party

– Doesn’t have any account relationship with the IdP∗

– Must be able to verify the IdP’s identity

– Needs to trust third-party IdPs
∗Note: privacy issues.

IETF 83 RTCWeb Generic Identity Provision 7



Web-based IdP Systems

• Facebook Connect

• Google login

• OAuth

• OpenID

• BrowserID
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Example: Facebook Connect (sorta OAuth)

• AP is a user with a Facebook account

– They may or may not be logged in at the moment

– (Where logged in == cookies)

• RP is a Web server

– Idea is to bootstrap Facebook authentication

– ... rather than have your own account system

– RP registers with Facebook and gets an application key

∗ Facebook wants to control authentication experience
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Facebook Connect Call Flow (not logged in) 1

Alice
RP

www.example.com Facebook

GET /... //

Redirect to
www.facebook.com/dialog/oauth?client id=1234&redirect uri=www.example.com/auth

oo
GET /dialog/oauth?client id=1234&redirect uri=www.example.com/auth //

//Login and permissions dialogoo
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Facebook Connect Call Flow (not logged in) 2

Alice
RP

www.example.com Facebook

GET /... //

Redirect to
www.facebook.com/dialog/oauth?client id=1234&redirect uri=www.example.com/auth

oo
GET /dialog/oauth?client id=1234&redirect uri=www.example.com/auth //

//Login and permissions dialogoo

Redirect to
www.example.com/auth?code=5678

oo
GET /auth?code=5678 //

GET /oauth/access token?client id=1234&client secret=<secret>&code=5678//

access token=987654321oo
GET /me?access token=987654321 //

user=1111111, ...oo
Hello, user 1111111oo
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Example: BrowserID

• Effectively client-side certificates

– But user not exposed to certificates

• Why this example?

– Easy to understand

– Familiar-looking technology

– Less need to wrap your head around redirects, etc.
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BrowserID (no key pair)

Alice
RP

www.example.com
BrowserID.org

GET /... //
<script src="https://browserid.org/include.js"/>

navigator.id.get(function(assertion){...});
oo

[Generate Keys]

Get certificate + Cookie //

Certificateoo

[Sign Assertion]
Signed assertion + Certificate //

Hello, user 11111111oo
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What are we trying to accomplish?

• Repurpose existing identity infrastructure for user-to-user

authentication

• Requirements/objectives

– Use existing accounts

– Minimal (preferably no) changes to IdP

– Easy to support at calling site

∗ Better if no change

– Generic support in browser

∗ Single downward interface between PeerConnection object

and IdP

∗ Should be able to support new IdPs/protocols without

changing browser
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Example IdP Interaction: BrowserID

Example IdP Interaction: BrowserId
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’Alice’
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Check Certifi
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Example JSEP TransportInfo with BrowserID

"ufrag":"8hhy",

"fingerprint":{

"algorithm":"sha-1",

"value":"4AADB9B13F82183B540212DF3E5D496B19E57CAB",

},

"candidates:[

...

],

"identity":{

"idp":{ // Standardized

"domain":"browserid.org",

"method":"default"

},

"assertion": // Contents are browserid-specific

"\"assertion\": {

\"digest\":\"<hash of the contents from the browser>\",

\"audience\": \"[TBD]\"

\"valid-until\": 1308859352261,

},

\"certificate\": {

\"email\": \"rescorla@example.org\",

\"public-key\": \"<ekrs-public-key>\",

\"valid-until\": 1308860561861,

}" // certificate is signed by example.org

}

}
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Example JSEP TransportInfo with Facebook Connect

(Or any private identity service)

{

"pwd":"asd88fgpdd777uzjYhagZg",

"ufrag":"8hhy",

"fingerprint":{

"algorithm":"sha-1",

"value":"4AADB9B13F82183B540212DF3E5D496B19E57CAB",

},

"candidates:[

...

],

"identity":{

"idp":{

"domain": "example.org"

"protocol": "bogus"

},

"assertion":\"{\"identity\":\"bob@example.org\",

\"contents\":\"abcdefghijklmnopqrstuvwyz\",

\"signature\":\"010203040506\"}"

}

}

* Assumption here is that we have changed JSEP to emit

transport-infos
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But we want it to be generic...

• This means defined interfaces

• ... that work for any IdP

IETF 83 RTCWeb Generic Identity Provision 19



What needs to be defined

• Information from the signaling message that is authenticated

[IETF]

– Minimally: DTLS-SRTP fingerprint

– Generic carrier for identity assertion

– Depends on signaling protocol

• Interface from PeerConnection to the IdP [IETF]

– A specific set of messages to exchange

– Sent via postMessage() or WebIntents

• JavaScript calling interfaces to PeerConnection [W3C]

– Specify the IdP

– Interrogate the connection identity information
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What needs to be tied to user identity?

• Only data which is verifiably bound is trustworthy

– Need to assume attacker has modified anything else

• Initial analysis (depends on protocol)

– Fingerprint (MUST)

– ICE candidates

– Media parameters
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Security Properties of ICE Candidates

• Effect of modifying ICE candidates

– Advertise candidates to route media through attacker

∗ Makes a MITM attack easier

∗ Mostly irrelevant if DTLS keying used

– Route to /dev/null (DoS)

∗ Silly if you are in signaling path!

• Signaling service can affect ICE candidates anyway

– Provide a malicious TURN server

– Return blackhole server reflexive addresses

– This drives data through signaling service

• General conclusion from last meeting: don’t protect ICE

parameters
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Security Properties of Media Parameters

• Which media flows

– Calling service has control of this anyway

– But the UI needs to show what is being used

∗ For consent reasons

• Which codecs

– Calling service can influence these

– Might be nice to secure them

– But too limiting

– SRTP should provide security regardless of codec selection
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Generic Structure for Identity Assertions

"identity":{

"idp":{ // Standardized

"domain":"idp.example.org", // Identity domain

"method":"default" // Domain-specific method

},

"assertion": "..." // IdP-specific

}
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Generic Downward Interface

(Implemented by PeerConnection)

• Instantiate “IdP Proxy” with JS from IdP

– Probably invisible IFRAME

– Maybe a WebIntent (more later)

• Send (standardized) messages to IdP proxy via postMessage()

– “SIGN” to get assertion

– “VERIFY” to verify assertion

• IdP proxy responds

– “SUCCESS” with answer

– “ERROR” with error
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Where is the IdP JS fetched from?

• Deterministically constructed from IdP domain name and method

https://<idp-domain>/.well-known/idp-proxy/<protocol>

• Why in /.well-known?

– Trust-relationship derives from control of the domain

– Must not be possible for non-administrative users of domain to

impersonate IdP
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How does PeerConnection know IdP domain?

• Authenticating Party

– IdP domain configured into browser

∗ User “logs into” browser via UI

∗ WebIntents again

– Specified by the calling site

∗ “Authenticate this call with Facebook connect”

∗ Need a new API point for this

• Relying party

– Carried in the generic part of the identity assertion
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Generic Message Structure

{

"type": "...", // "SIGN","VERIFY","SUCCESS", ...

"id": "1", // used for correlation

}
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Incoming Message Checks (IdP Proxy)

• Messages MUST come from rtcweb://.../

• This prevents ordinary JS from instantiating IdP proxy

– Remember, it’s just an IFRAME

– But you can’t set your origin to arbitrary values

• Messages MUST come from parent window

– Prevents confusion about which proxy
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Incoming Message Checks (PeerConnection)

• Messages MUST come from IdP origin domain

– Prevents navigation by attackers in other windows

• Messages MUST come from IdP proxy window

– Prevents confusion about which proxy
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Signature process

PeerConnection -> IdP proxy:

{

"type":"SIGN",

"id":1,

"message":"abcdefghijklmnopqrstuvwyz"

}

IdPProxy -> PeerConnection:

{

"type":"SUCCESS",

"id":1,

"message": {

"idp":{

"domain": "example.org"

"protocol": "bogus"

},

"assertion":\"{\"identity\":\"bob@example.org\",

\"contents\":\"abcdefghijklmnopqrstuvwyz\",

\"signature\":\"010203040506\"}"

}

}
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Verification Process

PeerConnection -> IdP Proxy:

{

"type":"VERIFY",

"id":2,

"message":\"{\"identity\":\"bob@example.org\",

\"contents\":\"abcdefghijklmnopqrstuvwyz\",

\"signature\":\"010203040506\"}"

}

IdP Proxy -> PeerConnection:

{

"type":"SUCCESS",

"id":2,

"message": {

"identity" : {

"name" : "bob@example.org",

"displayname" : "Bob"

},

"contents":"abcdefghijklmnopqrstuvwyz"

}

}
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Meaning of Successful Verification

• IdP has verified assertion

– Identity is given in “identity”

– “name” is the actual identity (RFC822 format)

– “displayname” is a human-readable string

• Contents is the original message the AP passed in
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Processing Successful Verifications

• Authoritative IdPs

– RHS of identity.name matches IdP domain

– No more checks needed

• Third-party IdPs

– RHS of identity.name does not match IdP domain

– IdP MUST be trusted by policy

• These checks performed by PeerConnection
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How do I stand up a new IdP?

1. Get some users (the hard part)

2. Implement handlers for SIGN and VERIFY messages

• Probably < 100 lines of JS

3. Put the right JS at /.well-known/idp-proxy

4. Profit
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Integrated IdP Support

• Things work fine with no browser-side IdP support

• But specialized support is nice too

– “Sign-in to browser” in Chrome

– BrowserID in Firefox

– Better UI/performance properties

• Still specify IdP by URL

– IdP JS detects that the browser has built-in support

– Calls go directly to the browser code (polyfill)
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Do you need to use identity all the time?

• Not everyone will have an IdP account

– Not all calls should be authenticated (e.g., whistle-blowers)

• System degrades gracefully

– One-sided identity calls are secure from the other side’s

perspective

– Unauthenticated calls can be checked via clumsier mechanisms

(fingerprints, etc.)

• UI challenges to display to the user what has happened

– Tighter browser innovation (e.g., with address book or social

features) allows a better job
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Big open issues

• Should we allow third-party IdPs or not?

• Better mechanisms for talking to the IdP

– This “get service from other site” problem exists in a number

of contexts

– WebIntents?

• Interop with SIP (see, e.g., draft-wing-identity-media)

• Where does this go in JSEP?
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Questions?

IETF 83 RTCWeb Generic Identity Provision 39



Facebook Connect Call Flow (logged in)

Alice
RP

www.example.com Facebook

GET /... //

Redirect to
www.facebook.com/dialog/oauth?client id=1234&redirect uri=www.example.com/auth

oo
GET /dialog/oauth?client id=1234&redirect uri=www.example.com/auth //

Redirect to
www.example.com/auth?code=5678

oo
GET /auth?code=5678 //

GET /oauth/access token?client id=1234&client secret=<secret>&code=5678//

access token=987654321oo
GET /me?access token=987654321 //

user=1111111, ...oo
Hello, user 1111111oo
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Facebook Connect Privacy Features

• RP needs to register with Facebook

• User approves policy separately for each RP

– Including which user information to share

• Facebook learns about every authentication transaction

– Including user/RP pair
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BrowserID: Why no MITM Attacks?

Alice attacker.com example.com

GET /... //
GET /... //

<script src="https://browserid.org/include.js"/>

navigator.id.get(function(assertion){...});
oo

[Sign Assertion]
Signed assertion + Certificate//

Signed assertion + Certificate//
Hello, user 11111111oo
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BrowserID: Audience Parameter

Alice attacker.com example.com

GET /... //
GET /... //

<script src="https://browserid.org/include.js"/>

navigator.id.get(function(assertion){...});
oo

[Sign Assertion]
Signed assertion(audience=attacker.com) + Certificate

//
Signed assertion + Certificate//

Audience mismatch erroroo
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Preventing assertion forwarding

• BrowserID assertions are scoped to origin (audience parameter)

– RPs check that the origin in the assertion matches their domain

– This prevents assertion forwarding

• Why does this work?

– BrowserID JS is part of the TCB

– Browser enforces origin of requests from the calling site

– RP transitively trusts origin/audience because it trusts

BrowserID.org

IETF 83 RTCWeb Generic Identity Provision 44



Browser-ID Privacy Features

• Client generates a key pair

– Idp signs a binding between key pair and user ID

• Client generates assertions based on key pair

– Sends along certificate

• RP fetches IdP public key

– This need only happen once

• IdP never learns where you are visiting

– No relationship between RP and IdP
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Example: BrowserID (existing key pair)

Alice
RP

www.example.com
BrowserID.org

GET /... //
<script src="https://browserid.org/include.js"/>

navigator.id.get(function(assertion){...});
oo

[Sign Assertion]
Signed assertion + Certificate //

Hello, user 11111111oo
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BrowserID Security Architecture

Browser

myfavoritebeer.com

(RP)

browserid.org

(IdP)

Login as

ekr@rtfm.com?

postMessage() postMessage()

myfavoritebeer.com

(RP)HTTP

browserid.org

(RP)HTTP
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PostMessage: Sender

otherWindow.postMessage(message, targetOrigin);

otherWindow: the window to send the message to

message: the message to send

targetOrigin: the expected origin of the other window

IETF 83 RTCWeb Generic Identity Provision 48



Why do we need targetOrigin?

• Malicious pages can navigate other windows

– This creates a race condition

• RP creates the new window to IdP with w = createWindow()

• Attacker navigates w to his own site

• RP does w.postMessage(secret,...)

• Attacker gets the secret

• targetOrigin stops this
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PostMessage: receiver

window.addEventListener(’message’,

function(event) {

...

});

• Event properties:

data: the message passed by the sender

origin: the sender’s origin

source: the sender’s window

• Important: origin value can be trusted

– Enforced by the browser

– May not be the current origin of source, however
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IFRAMEs

• What if I don’t want another window to open?

– Solution: IFRAMEs
Browser

example.org

idp.org

postMessage() postMessage()
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IFRAME Security Properties

• Isolated from the main page

– More or less the same rules as a separate window

• Can be easily navigated by the main page

• Can be invisible (both good and bad)
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Logins generally done in separate windows
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Why aren’t logins done in IFRAMEs?

• Scenario: you are on example.org

– example.org wants to log you in with idp.org

• Both Facebook Connect and BrowserID use a separate window

• Why?

– IdP is soliciting the user’s password

– User needs to know they are using the right IdP

– A separate window means they can examine the URL bar

– Also concerns about clickjacking/redressing

• Other option is to navigate the entire page to an interstitial page
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How Clickjacking Works

• Attacker embeds the victim site’s page in an IFRAME

– IFRAME is in front but marked transparent

– The attacker’s page shows through

• Attacker gets the victim to click on “his” page

– Really the victim site’s page

• Victim has just taken action on the victim site
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IFRAMEs, Clickjacking, and Permissions Grants

Browser

example.org

idp.org

(invisible)

Grant permissions to

example.org?

Real frame hierarchy

Browser

example.org

Click here for porn

What the user sees
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Preventing Framing

• IdP policy is to have the login page be top-level

– Good RPs comply with this policy

– But we’re concerned about malicious RPs

• IdPs use “framebusting” JavaScript to prevent being framed

– This is harder than it sounds

– ... but standard procedure

IETF 83 RTCWeb Generic Identity Provision 57



IFRAMEs don’t have to be visible

idp = document.createElement(’IFRAME’);

$(idp).hide();

• This takes up no space on the screen

– It’s just JS from the IFRAME source running on the page

– Can still postMessage() to and from it

• Invisible IFRAMEs are a very important tool
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Web-based IdP Objectives: User Perspective

• Single-sign on

– No need to make a new account for each service

– Don’t need to remember lots of passwords

• Privacy

– Avoid creating a super-cookie

∗ Only authenticate to sites I have approved

∗ Control exposure of my personal information
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Web-based IdP Objectives: Site Perspective

• Low friction

– Avoid the need for account creation

– ... the source of a lot of user rolloff

• Leverage existing user information

– E.g., information you’ve stored in your FB account
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