
RTCWEB Generic Identity Service

IETF 83

Eric Rescorla

ekr@rtfm.com

IETF 83 RTCWeb Generic Identity Provision 1



What are we trying to accomplish?

• Allow Alice and Bob to have a secure call

– Authenticated with their identity providers

– On any site

∗ Even untrusted/partially trusted ones

• Advantages

– Use one identity on any calling site

– Security against active attack by calling site

– Support for federated cases

IETF 83 RTCWeb Generic Identity Provision 2



Topology

Signaling

Server

Alice’s

Browser

Bob’s

Browser

HTTPS

(JS
EP)

HTTPS(JSEP)

JS API JS API

Media

(DTLS-SRTP)

Identity

Provider

Identity

Provider

Get Assertion Get Assertion
Verify AssertionVerify Assertion

IETF 83 RTCWeb Generic Identity Provision 3



Terminology

Authenticating Party (AP): The entity which is trying to establish

its identity.

Identity Provider (IdP): The entity which is vouching for the AP’s

identity.

Relying Party (RP): The entity which is trying to verify the AP’s

identity.

IETF 83 RTCWeb Generic Identity Provision 4



Types of IdP

Authoritative: Attests for identities within their own namespace

– Often multiple Authoritatives IdPs exist with different scopes

– Examples: DNSSEC, RFC 4474, Facebook Connect (for the

Facebook ID)

Third-party : Attests for identities in a name-space they don’t

control

– Often multiple Third-Party IdPs share the same space

– Can attest to real-world identities

– Examples: SSL/TLS certificates, the State of California

(driver’s licenses)

IETF 83 RTCWeb Generic Identity Provision 5



Authoritative vs. Third-Party IdPs: Trust

Relationship

• No need to explicitly trust authoritative IdPs

– ekr@example.com is whoever example.com says it is

– The problem is authenticating example.com

• Third-party IdPs need to be explicitly trusted

– Example: how do I know GoDaddy is a legitimate CA?

– Answer: the browser manufacturer vetted them

– They are allowed to attest to any domain name

– Inherently problematic as discussed at plenary

IETF 83 RTCWeb Generic Identity Provision 6



User Relationships with IdPs

• Authenticating Party

– Has some account with the IdP

– May have established their identity

∗ Especially for third-party IdPs

– Can authenticate to the IdP in the future (e.g., with a

password)

• Relying party

– Doesn’t have any account relationship with the IdP∗

– Must be able to verify the IdP’s identity

– Needs to trust third-party IdPs
∗Note: privacy issues.

IETF 83 RTCWeb Generic Identity Provision 7



Web-based IdP Systems

• Facebook Connect

• Google login

• OAuth

• OpenID

• BrowserID

IETF 83 RTCWeb Generic Identity Provision 8



Example: Facebook Connect (sorta OAuth)

• AP is a user with a Facebook account

– They may or may not be logged in at the moment

– (Where logged in == cookies)

• RP is a Web server

– Idea is to bootstrap Facebook authentication

– ... rather than have your own account system

– RP registers with Facebook and gets an application key

∗ Facebook wants to control authentication experience

IETF 83 RTCWeb Generic Identity Provision 9



Facebook Connect Call Flow (not logged in) 1

Alice
RP

www.example.com Facebook

GET /... //

Redirect to
www.facebook.com/dialog/oauth?client id=1234&redirect uri=www.example.com/auth

oo
GET /dialog/oauth?client id=1234&redirect uri=www.example.com/auth //

//Login and permissions dialogoo

IETF 83 RTCWeb Generic Identity Provision 10



Facebook Connect Call Flow (not logged in) 2

Alice
RP

www.example.com Facebook

GET /... //

Redirect to
www.facebook.com/dialog/oauth?client id=1234&redirect uri=www.example.com/auth

oo
GET /dialog/oauth?client id=1234&redirect uri=www.example.com/auth //

//Login and permissions dialogoo

Redirect to
www.example.com/auth?code=5678

oo
GET /auth?code=5678 //

GET /oauth/access token?client id=1234&client secret=<secret>&code=5678//

access token=987654321oo
GET /me?access token=987654321 //

user=1111111, ...oo
Hello, user 1111111oo

IETF 83 RTCWeb Generic Identity Provision 11



Example: BrowserID

• Effectively client-side certificates

– But user not exposed to certificates

• Why this example?

– Easy to understand

– Familiar-looking technology

– Less need to wrap your head around redirects, etc.

IETF 83 RTCWeb Generic Identity Provision 12



BrowserID (no key pair)

Alice
RP

www.example.com
BrowserID.org

GET /... //
<script src="https://browserid.org/include.js"/>

navigator.id.get(function(assertion){...});
oo

[Generate Keys]

Get certificate + Cookie //

Certificateoo

[Sign Assertion]
Signed assertion + Certificate //

Hello, user 11111111oo

IETF 83 RTCWeb Generic Identity Provision 13



IETF 83 RTCWeb Generic Identity Provision 14



What are we trying to accomplish?

• Repurpose existing identity infrastructure for user-to-user

authentication

• Requirements/objectives

– Use existing accounts

– Minimal (preferably no) changes to IdP

– Easy to support at calling site

∗ Better if no change

– Generic support in browser

∗ Single downward interface between PeerConnection object

and IdP

∗ Should be able to support new IdPs/protocols without

changing browser

IETF 83 RTCWeb Generic Identity Provision 15



Example IdP Interaction: BrowserID

Example IdP Interaction: BrowserId

Alice’s Brower

WebRTC JS Code

Peer Connection

BrowserID
Signer

Fingerprint
Signed

Fingerprint

Identity
Provider

Get Certificate

Bob’s Brower

WebRTC JS Code

Peer Connection

BrowserID
Verifier

Signed
Fingerprint

’Alice’

Offer

Check Certifi
cate

IETF 82 WebRTC Security Architecture 21

IETF 83 RTCWeb Generic Identity Provision 16



Example JSEP TransportInfo with BrowserID

"ufrag":"8hhy",

"fingerprint":{

"algorithm":"sha-1",

"value":"4AADB9B13F82183B540212DF3E5D496B19E57CAB",

},

"candidates:[

...

],

"identity":{

"idp":{ // Standardized

"domain":"browserid.org",

"method":"default"

},

"assertion": // Contents are browserid-specific

"\"assertion\": {

\"digest\":\"<hash of the contents from the browser>\",

\"audience\": \"[TBD]\"

\"valid-until\": 1308859352261,

},

\"certificate\": {

\"email\": \"rescorla@example.org\",

\"public-key\": \"<ekrs-public-key>\",

\"valid-until\": 1308860561861,

}" // certificate is signed by example.org

}

}

IETF 83 RTCWeb Generic Identity Provision 17



Example JSEP TransportInfo with Facebook Connect

(Or any private identity service)

{

"pwd":"asd88fgpdd777uzjYhagZg",

"ufrag":"8hhy",

"fingerprint":{

"algorithm":"sha-1",

"value":"4AADB9B13F82183B540212DF3E5D496B19E57CAB",

},

"candidates:[

...

],

"identity":{

"idp":{

"domain": "example.org"

"protocol": "bogus"

},

"assertion":\"{\"identity\":\"bob@example.org\",

\"contents\":\"abcdefghijklmnopqrstuvwyz\",

\"signature\":\"010203040506\"}"

}

}

* Assumption here is that we have changed JSEP to emit

transport-infos

IETF 83 RTCWeb Generic Identity Provision 18



But we want it to be generic...

• This means defined interfaces

• ... that work for any IdP

IETF 83 RTCWeb Generic Identity Provision 19



What needs to be defined

• Information from the signaling message that is authenticated

[IETF]

– Minimally: DTLS-SRTP fingerprint

– Generic carrier for identity assertion

– Depends on signaling protocol

• Interface from PeerConnection to the IdP [IETF]

– A specific set of messages to exchange

– Sent via postMessage() or WebIntents

• JavaScript calling interfaces to PeerConnection [W3C]

– Specify the IdP

– Interrogate the connection identity information

IETF 83 RTCWeb Generic Identity Provision 20



What needs to be tied to user identity?

• Only data which is verifiably bound is trustworthy

– Need to assume attacker has modified anything else

• Initial analysis (depends on protocol)

– Fingerprint (MUST)

– ICE candidates

– Media parameters

IETF 83 RTCWeb Generic Identity Provision 21



Security Properties of ICE Candidates

• Effect of modifying ICE candidates

– Advertise candidates to route media through attacker

∗ Makes a MITM attack easier

∗ Mostly irrelevant if DTLS keying used

– Route to /dev/null (DoS)

∗ Silly if you are in signaling path!

• Signaling service can affect ICE candidates anyway

– Provide a malicious TURN server

– Return blackhole server reflexive addresses

– This drives data through signaling service

• General conclusion from last meeting: don’t protect ICE

parameters

IETF 83 RTCWeb Generic Identity Provision 22



Security Properties of Media Parameters

• Which media flows

– Calling service has control of this anyway

– But the UI needs to show what is being used

∗ For consent reasons

• Which codecs

– Calling service can influence these

– Might be nice to secure them

– But too limiting

– SRTP should provide security regardless of codec selection

IETF 83 RTCWeb Generic Identity Provision 23



Generic Structure for Identity Assertions

"identity":{

"idp":{ // Standardized

"domain":"idp.example.org", // Identity domain

"method":"default" // Domain-specific method

},

"assertion": "..." // IdP-specific

}

IETF 83 RTCWeb Generic Identity Provision 24



Generic Downward Interface

(Implemented by PeerConnection)

• Instantiate “IdP Proxy” with JS from IdP

– Probably invisible IFRAME

– Maybe a WebIntent (more later)

• Send (standardized) messages to IdP proxy via postMessage()

– “SIGN” to get assertion

– “VERIFY” to verify assertion

• IdP proxy responds

– “SUCCESS” with answer

– “ERROR” with error

IETF 83 RTCWeb Generic Identity Provision 25



Where is the IdP JS fetched from?

• Deterministically constructed from IdP domain name and method

https://<idp-domain>/.well-known/idp-proxy/<protocol>

• Why in /.well-known?

– Trust-relationship derives from control of the domain

– Must not be possible for non-administrative users of domain to

impersonate IdP

IETF 83 RTCWeb Generic Identity Provision 26



How does PeerConnection know IdP domain?

• Authenticating Party

– IdP domain configured into browser

∗ User “logs into” browser via UI

∗ WebIntents again

– Specified by the calling site

∗ “Authenticate this call with Facebook connect”

∗ Need a new API point for this

• Relying party

– Carried in the generic part of the identity assertion

IETF 83 RTCWeb Generic Identity Provision 27



Generic Message Structure

{

"type": "...", // "SIGN","VERIFY","SUCCESS", ...

"id": "1", // used for correlation

}

IETF 83 RTCWeb Generic Identity Provision 28



Incoming Message Checks (IdP Proxy)

• Messages MUST come from rtcweb://.../

• This prevents ordinary JS from instantiating IdP proxy

– Remember, it’s just an IFRAME

– But you can’t set your origin to arbitrary values

• Messages MUST come from parent window

– Prevents confusion about which proxy

IETF 83 RTCWeb Generic Identity Provision 29



Incoming Message Checks (PeerConnection)

• Messages MUST come from IdP origin domain

– Prevents navigation by attackers in other windows

• Messages MUST come from IdP proxy window

– Prevents confusion about which proxy

IETF 83 RTCWeb Generic Identity Provision 30



Signature process

PeerConnection -> IdP proxy:

{

"type":"SIGN",

"id":1,

"message":"abcdefghijklmnopqrstuvwyz"

}

IdPProxy -> PeerConnection:

{

"type":"SUCCESS",

"id":1,

"message": {

"idp":{

"domain": "example.org"

"protocol": "bogus"

},

"assertion":\"{\"identity\":\"bob@example.org\",

\"contents\":\"abcdefghijklmnopqrstuvwyz\",

\"signature\":\"010203040506\"}"

}

}

IETF 83 RTCWeb Generic Identity Provision 31



Verification Process

PeerConnection -> IdP Proxy:

{

"type":"VERIFY",

"id":2,

"message":\"{\"identity\":\"bob@example.org\",

\"contents\":\"abcdefghijklmnopqrstuvwyz\",

\"signature\":\"010203040506\"}"

}

IdP Proxy -> PeerConnection:

{

"type":"SUCCESS",

"id":2,

"message": {

"identity" : {

"name" : "bob@example.org",

"displayname" : "Bob"

},

"contents":"abcdefghijklmnopqrstuvwyz"

}

}

IETF 83 RTCWeb Generic Identity Provision 32



Meaning of Successful Verification

• IdP has verified assertion

– Identity is given in “identity”

– “name” is the actual identity (RFC822 format)

– “displayname” is a human-readable string

• Contents is the original message the AP passed in

IETF 83 RTCWeb Generic Identity Provision 33



Processing Successful Verifications

• Authoritative IdPs

– RHS of identity.name matches IdP domain

– No more checks needed

• Third-party IdPs

– RHS of identity.name does not match IdP domain

– IdP MUST be trusted by policy

• These checks performed by PeerConnection

IETF 83 RTCWeb Generic Identity Provision 34



How do I stand up a new IdP?

1. Get some users (the hard part)

2. Implement handlers for SIGN and VERIFY messages

• Probably < 100 lines of JS

3. Put the right JS at /.well-known/idp-proxy

4. Profit

IETF 83 RTCWeb Generic Identity Provision 35



Integrated IdP Support

• Things work fine with no browser-side IdP support

• But specialized support is nice too

– “Sign-in to browser” in Chrome

– BrowserID in Firefox

– Better UI/performance properties

• Still specify IdP by URL

– IdP JS detects that the browser has built-in support

– Calls go directly to the browser code (polyfill)

IETF 83 RTCWeb Generic Identity Provision 36



Do you need to use identity all the time?

• Not everyone will have an IdP account

– Not all calls should be authenticated (e.g., whistle-blowers)

• System degrades gracefully

– One-sided identity calls are secure from the other side’s

perspective

– Unauthenticated calls can be checked via clumsier mechanisms

(fingerprints, etc.)

• UI challenges to display to the user what has happened

– Tighter browser innovation (e.g., with address book or social

features) allows a better job

IETF 83 RTCWeb Generic Identity Provision 37



Big open issues

• Should we allow third-party IdPs or not?

• Better mechanisms for talking to the IdP

– This “get service from other site” problem exists in a number

of contexts

– WebIntents?

• Interop with SIP (see, e.g., draft-wing-identity-media)

• Where does this go in JSEP?

IETF 83 RTCWeb Generic Identity Provision 38



Questions?

IETF 83 RTCWeb Generic Identity Provision 39



Facebook Connect Call Flow (logged in)

Alice
RP

www.example.com Facebook

GET /... //

Redirect to
www.facebook.com/dialog/oauth?client id=1234&redirect uri=www.example.com/auth

oo
GET /dialog/oauth?client id=1234&redirect uri=www.example.com/auth //

Redirect to
www.example.com/auth?code=5678

oo
GET /auth?code=5678 //

GET /oauth/access token?client id=1234&client secret=<secret>&code=5678//

access token=987654321oo
GET /me?access token=987654321 //

user=1111111, ...oo
Hello, user 1111111oo

IETF 83 RTCWeb Generic Identity Provision 40



Facebook Connect Privacy Features

• RP needs to register with Facebook

• User approves policy separately for each RP

– Including which user information to share

• Facebook learns about every authentication transaction

– Including user/RP pair

IETF 83 RTCWeb Generic Identity Provision 41



BrowserID: Why no MITM Attacks?

Alice attacker.com example.com

GET /... //
GET /... //

<script src="https://browserid.org/include.js"/>

navigator.id.get(function(assertion){...});
oo

[Sign Assertion]
Signed assertion + Certificate//

Signed assertion + Certificate//
Hello, user 11111111oo

IETF 83 RTCWeb Generic Identity Provision 42



BrowserID: Audience Parameter

Alice attacker.com example.com

GET /... //
GET /... //

<script src="https://browserid.org/include.js"/>

navigator.id.get(function(assertion){...});
oo

[Sign Assertion]
Signed assertion(audience=attacker.com) + Certificate

//
Signed assertion + Certificate//

Audience mismatch erroroo

IETF 83 RTCWeb Generic Identity Provision 43



Preventing assertion forwarding

• BrowserID assertions are scoped to origin (audience parameter)

– RPs check that the origin in the assertion matches their domain

– This prevents assertion forwarding

• Why does this work?

– BrowserID JS is part of the TCB

– Browser enforces origin of requests from the calling site

– RP transitively trusts origin/audience because it trusts

BrowserID.org

IETF 83 RTCWeb Generic Identity Provision 44



Browser-ID Privacy Features

• Client generates a key pair

– Idp signs a binding between key pair and user ID

• Client generates assertions based on key pair

– Sends along certificate

• RP fetches IdP public key

– This need only happen once

• IdP never learns where you are visiting

– No relationship between RP and IdP

IETF 83 RTCWeb Generic Identity Provision 45



Example: BrowserID (existing key pair)

Alice
RP

www.example.com
BrowserID.org

GET /... //
<script src="https://browserid.org/include.js"/>

navigator.id.get(function(assertion){...});
oo

[Sign Assertion]
Signed assertion + Certificate //

Hello, user 11111111oo

IETF 83 RTCWeb Generic Identity Provision 46



BrowserID Security Architecture

Browser

myfavoritebeer.com

(RP)

browserid.org

(IdP)

Login as

ekr@rtfm.com?

postMessage() postMessage()

myfavoritebeer.com

(RP)HTTP

browserid.org

(RP)HTTP

IETF 83 RTCWeb Generic Identity Provision 47



PostMessage: Sender

otherWindow.postMessage(message, targetOrigin);

otherWindow: the window to send the message to

message: the message to send

targetOrigin: the expected origin of the other window

IETF 83 RTCWeb Generic Identity Provision 48



Why do we need targetOrigin?

• Malicious pages can navigate other windows

– This creates a race condition

• RP creates the new window to IdP with w = createWindow()

• Attacker navigates w to his own site

• RP does w.postMessage(secret,...)

• Attacker gets the secret

• targetOrigin stops this

IETF 83 RTCWeb Generic Identity Provision 49



PostMessage: receiver

window.addEventListener(’message’,

function(event) {

...

});

• Event properties:

data: the message passed by the sender

origin: the sender’s origin

source: the sender’s window

• Important: origin value can be trusted

– Enforced by the browser

– May not be the current origin of source, however

IETF 83 RTCWeb Generic Identity Provision 50



IFRAMEs

• What if I don’t want another window to open?

– Solution: IFRAMEs
Browser

example.org

idp.org

postMessage() postMessage()

IETF 83 RTCWeb Generic Identity Provision 51



IFRAME Security Properties

• Isolated from the main page

– More or less the same rules as a separate window

• Can be easily navigated by the main page

• Can be invisible (both good and bad)

IETF 83 RTCWeb Generic Identity Provision 52



Logins generally done in separate windows

IETF 83 RTCWeb Generic Identity Provision 53



Why aren’t logins done in IFRAMEs?

• Scenario: you are on example.org

– example.org wants to log you in with idp.org

• Both Facebook Connect and BrowserID use a separate window

• Why?

– IdP is soliciting the user’s password

– User needs to know they are using the right IdP

– A separate window means they can examine the URL bar

– Also concerns about clickjacking/redressing

• Other option is to navigate the entire page to an interstitial page

IETF 83 RTCWeb Generic Identity Provision 54



How Clickjacking Works

• Attacker embeds the victim site’s page in an IFRAME

– IFRAME is in front but marked transparent

– The attacker’s page shows through

• Attacker gets the victim to click on “his” page

– Really the victim site’s page

• Victim has just taken action on the victim site

IETF 83 RTCWeb Generic Identity Provision 55



IFRAMEs, Clickjacking, and Permissions Grants

Browser

example.org

idp.org

(invisible)

Grant permissions to

example.org?

Real frame hierarchy

Browser

example.org

Click here for porn

What the user sees

IETF 83 RTCWeb Generic Identity Provision 56



Preventing Framing

• IdP policy is to have the login page be top-level

– Good RPs comply with this policy

– But we’re concerned about malicious RPs

• IdPs use “framebusting” JavaScript to prevent being framed

– This is harder than it sounds

– ... but standard procedure

IETF 83 RTCWeb Generic Identity Provision 57



IFRAMEs don’t have to be visible

idp = document.createElement(’IFRAME’);

$(idp).hide();

• This takes up no space on the screen

– It’s just JS from the IFRAME source running on the page

– Can still postMessage() to and from it

• Invisible IFRAMEs are a very important tool

IETF 83 RTCWeb Generic Identity Provision 58



IETF 83 RTCWeb Generic Identity Provision 59



Web-based IdP Objectives: User Perspective

• Single-sign on

– No need to make a new account for each service

– Don’t need to remember lots of passwords

• Privacy

– Avoid creating a super-cookie

∗ Only authenticate to sites I have approved

∗ Control exposure of my personal information

IETF 83 RTCWeb Generic Identity Provision 60



Web-based IdP Objectives: Site Perspective

• Low friction

– Avoid the need for account creation

– ... the source of a lot of user rolloff

• Leverage existing user information

– E.g., information you’ve stored in your FB account

IETF 83 RTCWeb Generic Identity Provision 61


