SHA-3 for Internet Protocols

Quynh Dang & Tim Polk

Computer Security Division

Information Technology Laboratory

National Institute of Standards and Technology

Overview

SHA-3 Competition background and status
SHA-3 (and SHA-2)
— Security, Functionality, and Performance

Useful Data Points For Protocol Analysis
Review of Specific Protocols

SHA-3 Competition:

Background

« 2004-2005 Wave of new cryptanalysis

— Wang, Biham, Joux, Kelsey all published significant
papers....

— Cast doubt on existing hash standards and the
traditional Merkle-Damgard construction

« 2005, 2006 NIST Hash Function Workshops

— Industry and academia encouraged NIST to run a
competition and contribute to planning

« 2007 NIST organized SHA-3 competition
— 64 candidates submitted 31 Oct. 2008

Requirements for SHA-3

* Plug-compatible with SHA-2 in current apps

e Support digital signatures, hash-based MACs,
PRFs, RNGs, KDFs, etc.

* Required security properties
— Collision resistance of approximately n/2 bits,
— Preimage resistance of approximately n bits,

— Second-preimage resistance of approximately n-k
bits for any message shorter than 2k bits,

— Resistance to length-extension attacks.

SHA-3 Competition: Current Status

* Five Finalists identified late in 2010.
— Blake, Grgstl, JH, Keccak, Skein

* Final tweaks submitted January 2011.

* Final Workshop held last week (March 2012) in
Washington DC

* NIST will announce the winning candidate late in
2012

http://csrc.nist.gov/groups/ST/hash/sha-3/index.html

SHA-3: Security

e Confidence in the security of SHA-3
candidates is very high

e SHA-3 candidates are based on new
constructions

— not vulnerable to well known attacks on Merkle-
Damgard construction (e.g., length extension
attack)

* However, cryptanalysis since 2005 has actually
eased our concerns about SHA-2

SHA-3: Performance (1 of 3)

e There is no free lunch this time: collision resistance
takes a lot of computation

— We will not replicate the across-the-board performance
increase we got with AES (as compared with Triple DES)

SHA-3: Performance (2 of 3)

* SHA-2 is surprisingly efficient and could be faster (or
smaller) in some environments than SHA-3, no
matter which of the 5 candidates is selected.

 SHA-256 is competitive in low-end SW platforms and
“constrained” HW

* Depending on the selected algorithm, SHA-3 could
be faster than SHA-2 in some environments

— Skein & Blake faster in software on high end computing
platforms

— Keccak is fast in hardware in general

SHA-3: Performance (3 of 3)

 However, SHA-3 potentially offers significantly
better performance for one important
function: hash-based MACs on short messages

— Only requires a single pass since we aren’t
worried about length extension attacks
* |n fact, a single pass keyed hash for some
candidate algorithms would be faster than a
SHA-1 HMAC for short messages

The (New) Real Question

 Which Candidate best complements SHA-27
— SHA-2 is not apparently broken

 SHA-2 collision resistance seems fine but SHA-3 candidates
have greater security margins

— All candidates have much higher multicollision
resistance than SHA-2 and fix the other generic
limitations of Merkle-Damgard

— No candidate has dramatically better performance
across the board

« Some candidates have much better performance for some
kinds of implementations

« All will support a single pass keyed MAC

— Some candidates offer extras
* Wide block cipher, authenticated encryption

Questions for Protocol Developers

* Should NIST emphasize high-end or low-end
HW or SW or any combination of these in our
selection process?

* For low-end HW, should NIST emphasize
energy consumption, throughput to area
ratio, minimum size, or any combination of
these in our selection process?

* Should NIST specify a single algorithm for all
digest sizes, or two algorithms as in SHA-2
(SHA-256 and SHA-512)?

Data Points For Protocol Analysis (1/2)

* How are hash algorithms used?
— Hash, Signature, HMAC, KDF, PRF?

* |s SHA-2 already specified for that protocol?
* |s the protocol agile in practice?

— Is cipher suite negotiation supported?

— Do all end points need to be updated before use?

Data Points for Protocol Analysis, (2/2)

Is SHA-2 widely implemented? used?

— If so, SHA-3 would be a straightforward and
suitable backup

Would SHA-3 present specific practical
advantages?
— E.g., single pass MACs, tree mode?

— If so, consider SHA-3 for the Mandatory To
Implement cipher suite

Initial Thoughts on Specific IETF
Protocols and SHA-3

* Reviewed about a dozen protocol families
* High-level analysis for a few

— TCP-AO

— Constrained Devices (core, roll, 6lowpan)

— Mature X.509 protocols (PKIX, S/MIME, TLS)

* Defer more detailed analysis once the
selection has been made

Quick Example: TCP-AO

TCP-AO uses hash functions to derive keys and
generate HMACs

— SHA-1 HMAC s are truncated to 96 bits

— No support for SHA-2

Has algorithm agility, so it would be easy to specify
Assuming use of a single pass MAC, SHA-3 would
provide a better alternative than SHA-256

— Performance would be comparable to current SHA-1
based implementations

No strong justification for mandatory to implement
— No real security motivation (96 bit tag!)

Constrained Devices

* Core, roll, and 6lowpan

— Devices may have limited resources (e.g.,
processing power, memory, or battery power)

— Common “solution” in this market sector is weak
security

* Single pass hmacs consumes less power

— SHA-3 candidates which provides additional
functionality (e.g., authenticated encryption)
would enable memory/area savings

PKIX

Hashes primarily support digital signatures on
“messages” ranging from lkbyte to tens of
megabytes, but ...

Review of ASN.1 in RFC 5912 shows hash algs also
used in nearly every plausible mode

SHA-2 support well specified, but migration process
has been painful

For general purpose certs, infrastructure can’t issue
until “all” end systems are ready

S/MIME

Hashes primarily support digital signatures on
“messages” ranging from a few kbytes to tens of

megabytes and certificate handling

SHA-2 support well specified in RFC 5754, and
starting to be deployed, but not widely used

Security of SHA-1 (which is widely used) is
inadequate

SMIMECapabilities conveys sender’s set of supported
crypto algorithms, but we still have a bootstrap issue

TLS

Uses hash algorithms extensively
— e.g., PRF, hmac, and certificate handling

SHA-256 well specified in most recent
protocol specs

Messages can be relatively large, so the
incremental performance improvement from
single pass MAC may be limited

Ciphersuites are negotiated so incremental
deployment might be practical

Questions?

