BGPSEC Router Key Roll-over

draft-rogaglia-sidr-bgpsec-rollover-00

Roque Gagliano Keyur Patel Brian Weis

Goals of this draft

- Key rollover & certificate life-cycle management are necessary topics when developing a PKI
 - RFC 6489 describes a rollover method of RPKI CA keypairs & certificates
 - Rollover of EE certificates is not described, but it is a relatively simple matter of distributing a new EE certificate & ROA before the old one expires
 - However, router BGPSEC adds router keypairs/certificates, and their expiration affects BGP state. It's important to carefully consider and document this process. This is the primary goal of this draft
- We then show that once this rollover method is available that it can be used as a replay mechanism for BGPSEC
 - Preventing replays of updates that do not meet current policy
 - Re-enforcing current policy

Motivations for Router Keypair/ Certificate Rollover

- Scheduled rollover due to AS security policy
 - E.g., periodic renewal of keypairs/certificates because of a certificate lifetime policy
- Changes in certificate fields
 - E.g., a subject name change
- Emergency rollover
 - E.g., due to a router's private key compromise.
 - When all PE routers in the AS share a keypair/ certificate, it is especially important to be prepared to rollover.

Steps in the Rollover

- New Certificate Pre-publication
 - Rollover AS Generates new keypair (optional) and obtains a new certificate for the router(s)
 - If generated elsewhere, keypairs are positioned onto the router(s)
- Stage Period
 - Rollover AS makes the new certificate available to the RPKI global repository and it is propagated to RPKI Caches
 - Each global RPKI-Cache will add the new key to the routers that it manages
- Twilight
 - Rollover AS Routers begin using new keys to sign BGP Updates
 - They also must generate new BGP Updates for every BGP Updates signed by the old key (both origin and transit signatures)
- CRL Publication (optional)
 - If this is an Emergency Rollover, the Rollover AS distributes a CRL including the Serial Number of the old certificate
- RPKI-Router Protocol Withdrawal
 - Each global RPKI-Caches removes the old key from the routers that it manages
 - Routers withdraw any RIB entry that includes an attribute signed with that key

Rollover Timeline (CRL Publication)

Operational Requirements

- This process requires nothing different by operations staff over the initial key generation process
 - Generation of a keypair & distribution to all routers using that keypair (if shared)
 - Obtaining a certificate for the keypair & installing it on the local RPKI Cache
 - (Optional) Generating a new CRL & installing it on the local RPKI Cache
- Everything else happens naturally as a function of RPKI operations & router software

Origin vs. Transit Signing

- A transit AS that also originates routes in BGP could benefit from using a unique keypair/certificate for Updates that it originates from Updates that it receives, signs and forwards (i.e., transits)
 - This method reduces the number of Updates that need to be originated and withdrawn if the Origin keypair/ certificate needs to be replaced
 - It may also be possible to choose a longer certificate
 validity period for the keypair used to sign transit Updates

Rollover without a key change

- When a router certificate rollover happens due to policy (e.g., certificate expiration), it is advisable to issue a certificate with the same key
 - The scope of the rollover is thus restricted to the RPKI Caches
 - There's no need for routers to issue new Updates or withdraw old Updates, because the router cache has not changed

Other reasons to use the rollover mechanism

- It is necessary to distribute new Updates and Withdrawals as part of the rollover process.
 - These are the same steps needed by any method that changes BGP (e.g., the Expire Time)
 - Can we use a BGPSEC rollover event as a BGPSEC replay protection method?

Replay Protection

- The requirements document says
- 4.3 Replay of BGP UPDATE messages need not be completely prevented, but a BGPsec design MUST provide a mechanism to control the window of exposure to replay attacks.
- The "window of exposure" is only open if something about the Update has changed (e.g., AS_PATH first hop)
 - Under normal circumstances, this is infrequent
 - When there is a change, a BGPSEC rollover is about 2 * Cache Update Period +1 * BGP Update Period.
 - Conservative setting of the Expire Time (currently specified in the BGPSEC protocol) may not react in a shorter period
- Note that the use of the Expire Time requires new Updates regardless of whether there is an open window

Conclusions

- It is both necessary and valuable to describe a careful process for BGPSEC router keypair/ certificate rollover
- This process can also be used to ensure freshness in the routing system, without changing BGP semantics
- We believe this topic is suitable as a WG deliverable, and would like feedback regarding making this a WG document

Backup Slides

Rollover Timeline (Certificate Expiration)

Maintaining the replay window in the RPKI

- It is still possible to maintain a replay window in the RPKI by
 - Choosing a short certificate validation period
 - When there is no need to withdraw a router, reissue the router certificate with the same public key, but change the key when necessary
- This can be thought of as "beaconing" within the RPKI, but without changing BGP state