There and *Not* Back Again

Or How to Stop Route Leaks
Motivation

• Desire to improve security (SIDR’s BGPSEC)
• Known problem
• Lack of definition is hampering efforts
Comedy of Errors

• “What’s a route leak?”
• Chicken & egg issue
• Tends to immediately rat-hole
Getting It, Backwards

• What isn’t a Route Leak?
• What should *not* be announced?
• Where should leaks be identifiable?
What a Route Leak Isn’t

• Concept of “Customer” – does not need *need* to be defined strictly!

• Customer is a “universal donor”
 – Everyone is willing to accept Customer routes

• Customer is a “universal recipient”
 – Customers generally want it all

• **Route Leak**: sending a non-customer route to a non-customer neighbor
Neighbor Categories are Key

• The categories are per-neighbor-instance
• Superset of (and consistent with) local policy
• Four types based on local-remote relationship:
 – Peer – Peer
 – Customer – Transit
 – Transit – Customer
 – Mutual-Transit – Mutual-Transit
• Based on whether non-customer routes ok
• Based on, but independent of, “customer” definition!
Route Leaks are not Policy

• There are already lots of tools for doing policy
• Stopping leaks is not really a “local policy”
 – Should not try to re-implement local policy
 – Tools don’t need to be useful to local policy either
 – (But they can be)
• Not “belt + suspenders”; “seat belt + air bag”!
Diagrams – Start Simple

- Transit
- Peer
- Customer

Our_AS
Customer -> All – Good

Our_AS

Transit

Customer

Peer

Peer

Customer
All -> Customer – Good
Transit -> Transit/Peer – LEAK
Peer -> Transit/Peer – LEAK
Diagrams – Now with Mutual Transit
Our Customer -> All – Good
All (via MT) -> Customer – Good
Peer -> Any Transit/Peer – LEAK
Transit -> Any Transit/Peer – LEAK
Color Markings and Transitions

- In order to reconcile sent colors vs received colors, certain transitions are needed; to stop leaks, additional filtering is done (red):

Diagram:

- Our_AS to Peer
- Our_AS to Transit
- Our_AS to Customer
- Our_AS to Mutual Transit

- Additional filtering done (red):
In order to combine multiple prefixes from multiple sources, we need an additional element: a RIB color partition.

Best-path logic is dictated by local policy.

The color “partition” is merely a Venn-diagramatic convenience.

There is still only one RIB.

We are illustrating that “best” paths inherit color from their IN-RIB, i.e. whatever the received color was.
The BIG PICTURE
Route Leak Blocking Logic

- Expressed as a neighbor-type matrix
- X marks the Leak (block the leak)

<table>
<thead>
<tr>
<th>Source (color)</th>
<th>Dest</th>
<th>Peer</th>
<th>Transit</th>
<th>Mutual-Transit Non-Customer</th>
<th>Mutual-Transit Customer</th>
<th>Customer</th>
</tr>
</thead>
<tbody>
<tr>
<td>Peer (yellow)</td>
<td></td>
<td>X</td>
<td>X</td>
<td>Yellow</td>
<td>X</td>
<td>Yellow</td>
</tr>
<tr>
<td>Transit (yellow)</td>
<td></td>
<td>X</td>
<td>X</td>
<td>Yellow</td>
<td>X</td>
<td>Yellow</td>
</tr>
<tr>
<td>Mutual-Transit Non-customer (yellow)</td>
<td></td>
<td>X</td>
<td>X</td>
<td>Yellow</td>
<td>X</td>
<td>Yellow</td>
</tr>
<tr>
<td>Mutual-Transit Customer (green)</td>
<td>Yellow</td>
<td>Green</td>
<td>X</td>
<td>Green</td>
<td>Yellow</td>
<td>Yellow</td>
</tr>
<tr>
<td>Customer (green)</td>
<td>Yellow</td>
<td>Green</td>
<td>X</td>
<td>Green</td>
<td>Yellow</td>
<td>Yellow</td>
</tr>
</tbody>
</table>
The Internet Drafts

• There are three drafts in a very early stage
 – Definitions, Requirements, and Proposed Solutions

• Please consider reading them and giving feedback

• The main questions are:
 – Is it safe?
 – Is it correct?
 – Should it be adopted by IDR?
 – Should it be included in SIDR’s scope?
Any Questions?

• Sorry I’m not here in person
• Brian Dickson
• (Currently individual work by me)
• brian.peter.dickson@gmail.com
• bdickson@verisign.com
• Thank you, especially chairs, scribes, and volunteers.