Overview of
draft-ietf-soc-overload-rate-control

SOC Rate team:
Eric Noel, AT&T Labs, Inc
Janet Gunn, CSC
Philip Williams, BT

Introduction

* Last SOC meeting IETF81

— Agreed: submit a rate-based contribution to
complement the loss-based control in draft-ietf-soc-
overload-control

* We propose a rate-based overload control
approach
— mitigates congestion in SIP networks

— conforms to draft-ietf-soc-overload-control signalling
scheme

— draft-ietf-soc-overload-rate-control-01 available

IETF 83, Paris slide 2 26-Mar-12

Overview:
Commonality & Differences
loss-based, rate-based

Same parameters
Different values/interpretation

Server

Method not specified
Based on internal measurements e.g.
message rate,

CPU utilisation,
gueueing delay

IETF 83, Paris slide 3 26-Mar-12

Motivations

Loss-based & Rate-based client algorithms compared

e Behaviour between server updates:

— Loss-based: admitted rate after control « arrival rate before control
* vulnerable to sudden increases in offered load at client sources
* cannot guarantee bounded rate towards an overloaded server

— Rate-based: constant rate bounds

* Deployment in simple/nascent networks
— Loss-based: fixed rejection proportion not possible
* although adaptation not difficult
— Rate-based: static max rates simple
* not efficient, but can be made adaptive later
* Support for precise capacity guarantees
— e.g. communication provider boundaries
— policy easier to realise & enforce
* Penalty: algorithmic complexity?
— Server: must allocate portion of target offered load to each conversing client
* max rate may not be attained

— Client: leaky bucket more complex than proportional blocking
* but incorporating priorities easy

IETF 83, Paris slide 4 26-Mar-12

Client and Server
Rate-control Algorithm Selection

Client Server
sends returns
oC oc = <rateValue>

/(]

oc-algo = “loss”, “rate” oc-algo = “rate”

oc-validity = <controlDuration>

IETF 83, Paris slide 5 26-Mar-12

Key oc Via parameter values

Server assignments

value value Client action scope
(oc) (oc-validity)

>0 >0 T:=1/value(oc) example alg’'m

=0 >0 reject all rate-based
requests (only)

any =0 stop throttling all
immediately (loss & rate)

NB: Other Via parameters are common (not shown)

IETF 83, Paris slide 6 26-Mar-12

Server operation overview

e Server MUST periodically evaluate its overload state and
estimate a target SIP request rate
— to avoid congestion collapse & maintain effective throughput

— allocate portion of target SIP request rate to each client
* max rate may not be attained by the arrival rate at the client
* may be related to capacity guarantees

— specific algorithm out of scope

e Per draft-ietf-soc-overload-control
— oc restriction value applies to entire stream of SIP Requests
» for rate-based: upper rate bound
— Request prioritization is Client responsibility

* Server does not know it explicitly
— but may need to take into account effect this has on the load it receives

IETF 83, Paris slide 7 26-Mar-12

lllustrative Client Algorithms

* No mandatory algorithm

 Example Client algorithms included

— may use others that comply with rate upper
bound

* Range of approaches
— basic scheme
— priorities: two or more

— avoidance of resonance

IETF 83, Paris slide 8 26-Mar-12

Client operation: basic example

A client default algorithm based on [ITU-T Rec. 1.371] Annex A Leaky Bucket algorithm

NB: actual requests
not queued

request/attempts

max fill: TAU+T 77 $ T

------------- fill after prior arrival

fill
‘real-valued’

time difference

$ --------------------- fill after admission
T

---------- provisional fill after arrival

no timers in

min fill: 0 ------------------ ,)
this version

leak rpte:
1 per unit time at each arrival

IETF 83, Paris slide 9 26-Mar-12

Priority scheme in client

e Client permitted to prioritize SIP requests

based on local policy
— RFC 5390: requirements

— RFC 6357: design considerations

— draft-ietf-soc-overload-control: 5.10.1

Message prioritization...

e E.g.two or more categories of requests

— criteria not specified. Might be

* Request method
e SIP URI

* Resource-Priority header field value

* Priority may be implemented in Leaky
Bucket algorithm using two or more

thresholds

IETF 83, Paris

slide 10

I
admit
high
priority
only

admit all

26-Mar-12

Avoidance of resonance

T becomes larger when:
— number of client sources of traffic increases and the
— throughput of the server decreases
* Fill of each bucket can become synchronized
— e.g. due to traffic surges
=>'peaky' arrivals at the server
e Solution: randomize bucket fill over T[1-)4,1+)5]

— activation of control
— admission after bucket empty

IETF 83, Paris slide 11 26-Mar-12

Conclusions

* Open discussion on draft-ietf-soc-overload-
rate-control

IETF 83, Paris slide 12 26-Mar-12

