Lightweight 4over6
 +
SD-nat (aka stateless DS-Lite)
 =
Lightweight DS-Lite (twice as light!)

Peng Wu
Ian Farrer
Introduction
History

• Lightweight 4over6-05
 – Merge two documents
 • I-D.cui-softwire-b4-translated-ds-lite
 • I-D.zhou-softwire-b4-nat
 – Focus on architectural discussion
 • Current I-D does not recommend any provisioning method. Rather it suggests it is up to operators to decide what to use.

• SD-Nat-02
 – Use minPort-maxPort ICMP message
 • instead of [1024-Maxport] only
 • No need for ALGs on AFTR
 – Focus on DS-Lite only
 • (no description of NAT444 case)
Motivations

• Extension to DS-lite with no NAT, and address sharing mode for Public 4over6
 • backward compatible

• IPv4 address sharing
 o Subscriber-level port set allocation

• Scalability requirement
 o Per-session=>per-subscriber state
 o Easy/No logging

• No IPv4 and IPv6 address coupling
Benefits of allocating independently IPv6 and IPv4 address

• IPv6 addresses do not have to be allocated sequentially.
• Easily define and change IPv4 customer profiles (number of ports).
• IPv4 resources can be re-allocated freely.
• Anycast announcements can be fine tuned.
Not Tying IPv6 address to IPv4 address plus port range

• In general, removing the mathematical restriction allows the operator to deliver the service he wants to offer, in the way he wants to offer them.

• The price to pay is to provision and manage resources at a finer granularity.

• Introduce per-subscriber state on tunnel concentrator (AFTR)
 – No per flow state!
Technical Matrix

CGN Port Management
- DS-Lite
 - Per-session stateful
- Public 4over6
 - Per-subscriber stateful
- Lightweight 4over6
- Sd-nat

Addr/Port Set Provisioning
- Stateless
 - MAP-E, MAP-T, 4rd-u, etc.

Algorithmic Mapping

Address Binding
AFTR Provisioning Architecture
Role of AFTR

• **Upstream**
 – Decapsulate IPv6 header
 – Ingress filtering
 • ACL check on IPV4 address + port against per-subscriber mapping table
 • Send ICMP message back to CPE if ACL fails

• **Downstream**
 – Subscriber lookup
 • Check IPv4 address + port against per-subscriber mapping table
 – Encapsulate in IPv6
Complete AFTR Per-subscriber mapping table

<table>
<thead>
<tr>
<th>IPv6</th>
<th>IPv4</th>
<th>Port Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>2001:db8::1</td>
<td>192.1.2.3</td>
<td>1000-1999</td>
</tr>
<tr>
<td>2001:db8::2</td>
<td>192.1.2.3</td>
<td>2000-2999</td>
</tr>
</tbody>
</table>

Centralized Subscriber profile database
- IPv6 address of CPE
- IPv6 prefix
- IPv4 address of CPE
- IPv4 port range of CPE

Top-Down subscriber management
Stateless Fail-over Architecture

AFTR1, AFTR2 & AFTR3 are configured with the same:
- IPv4 pool
- Per-user mapping table
- IPv6 AFTR address

Complete AFTR Per-user mapping table

<table>
<thead>
<tr>
<th>IPv6</th>
<th>IPv4</th>
<th>Port Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>2001:db8::1</td>
<td>192.1.2.3</td>
<td>1000-1999</td>
</tr>
<tr>
<td>2001:db8::2</td>
<td>192.1.2.3</td>
<td>2000-2999</td>
</tr>
</tbody>
</table>

IPv4 anycast route for IPv4 NAT pool

IPv6 anycast route for AFTR IPv6 address

ICMPv4 “Port Restricted” over IPv6 tunnel

Top-Down subscriber management
Bottom-Up subscriber management

- **Log database**
 - IPv6 address of CPE
 - IPv6 prefix
 - IPv4 address of CPE
 - IPv4 port range of CPE

Local AFTR Per-subscriber mapping table

<table>
<thead>
<tr>
<th>IPv6</th>
<th>IPv4</th>
<th>Port Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>2001:db8:1</td>
<td>192.1.2.3</td>
<td>1000-1999</td>
</tr>
<tr>
<td>2001:db8:2</td>
<td>192.1.2.3</td>
<td>2000-2999</td>
</tr>
</tbody>
</table>

Local database:
No stateless fail-over between AFTRs

Tunnel Concentrator

DHCPv4 Server/Relay

AFTR box

DHCPv6

No central database to pre-allocate IPv4 or IPv6 customer information
Trade-off
Top-Down vs Bottom-Up

- **Bottom-Up**
 - IPv4 addresses & ports managed locally by AFTRs
 - No centralized subscriber database of IPv4/IPv6 resources
 - Need per-subscriber logging to reconcile information
 - Fail-over similar to standard DS-Lite

- **Top-Down**
 - IPv4 addresses and port centrally managed
 - Each AFTR has same subscriber mapping table
 - Enable stateless fail-over between AFTRs
CPE Configuration Architecture
Classic DS-Lite Architecture

IPv4

DHCPv6 configures:
- CPE IPv6 address
- CPE IPv6 delegated prefix
- DNS resolver
- AFTR IPv6 address

AFTR Per-flow mapping table

DS-Lite CPE implements:
- B4 element
IPv4

Public 4over6 Architecture

AFTR Per-subscriber mapping table

<table>
<thead>
<tr>
<th>IPv6</th>
<th>IPv4</th>
</tr>
</thead>
<tbody>
<tr>
<td>2001:db8::1</td>
<td>192.1.2.3</td>
</tr>
<tr>
<td>2001:db8::2</td>
<td>192.1.2.3</td>
</tr>
</tbody>
</table>

Stateless DS-Lite CPE implements:
- DHCPv4 Client Relay Agent (over IPv6) to configure B4 element IPv4 address

DHCPv4 (over IPv6) configures CPE B4 IPv4 address
- CPE IPv4 address
- IPv6 address of DHCPv4 server

DHCPv6 configures:
- CPE IPv6 address
- CPE IPv6 delegated prefix
- DNS resolver
- AFTR IPv6 address
- IPv6 address of DHCPv4 server
“lightweight DS-Lite”
CPE Provisioning

• IPv4 address
 – DHCPv4 over IPv6
 – PCP

• IPv4 port range
 – ICMP
 – DHCPv4 over IPv6 option
 – DHCPv6 option
 – PCP option

→ We need to select one as mandatory to implement
Stateless DS-Lite Architecture

DHCPv6 configures:
- CPE IPv6 address
- CPE IPv6 delegated prefix
- DNS resolver
- AFTR IPv6 address
- IPv6 address of DHCPv4 server

DHCPv4 configures:
- CPE IPv4 address

AFTR Per-subscriber mapping table:

<table>
<thead>
<tr>
<th>IPv6</th>
<th>IPv4</th>
<th>Port Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>2001:db8::1</td>
<td>192.1.2.3</td>
<td>1000-1999</td>
</tr>
<tr>
<td>2001:db8::2</td>
<td>192.1.2.3</td>
<td>2000-2999</td>
</tr>
</tbody>
</table>

ICMPv4 “Port Restricted” over IPv6 tunnel

Stateless DS-Lite CPE implements:
- DHCPv4 Client Relay Agent (over IPv6) to configure B4 element IPv4 address
- ICMP “Port Restricted” to configure its NAT port range
Lightweight 4over6 Architecture

DHCPv6 variant

DHCPv6 configures:
- CPE IPv6 address
- CPE IPv6 delegated prefix
- DNS resolver
- AFTR IPv6 address
- IPv6 address of DHCPv4 server

IPv4

AFTR Per-subscriber mapping table

<table>
<thead>
<tr>
<th>IPv6</th>
<th>IPv4</th>
<th>Port Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>2001:db8::1</td>
<td>192.1.2.3</td>
<td>1000-1999</td>
</tr>
<tr>
<td>2001:db8::2</td>
<td>192.1.2.3</td>
<td>2000-2999</td>
</tr>
</tbody>
</table>

Stateless DS-Lite CPE implements:
- DHCPv4 Client Relay Agent (over IPv6) to configure B4 element IPv4 address
- ICMP “Port Restricted” to configure its NAT port range

DHCPv6 “Port Restricted”

DHCPv4 (over IPv6) configures CPE B4 IPv4 address

DHCPv4 configures:
- CPE IPv6 address
- CPE IPv6 delegated prefix
- DNS resolver
- AFTR IPv6 address
- IPv6 address of DHCPv4 server
Lightweight 4over6 Architecture
DHCPv4 variant

DHCPv4 (over IPv6) configures:
- CPE IPv6 address
- CPE IPv6 delegated prefix
- DNS resolver
- AFTR IPv6 address
- IPv6 address of DHCPv4 server

Stateless DS-Lite CPE implements:
- DHCPv4 Client Relay Agent (over IPv6) to configure B4 element IPv4 address
- ICMP “Port Restricted” to configure its NAT port range

DHCPv6 configures:
- CPE IPv6 address
- CPE IPv6 delegated prefix
- DNS resolver
- AFTR IPv6 address
- IPv6 address of DHCPv4 server

AFTR Per-subscriber mapping table

<table>
<thead>
<tr>
<th>IPv6</th>
<th>IPv4</th>
<th>Port Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>2001:db8::1</td>
<td>192.1.2.3</td>
<td>1000-1999</td>
</tr>
<tr>
<td>2001:db8::2</td>
<td>192.1.2.3</td>
<td>2000-2999</td>
</tr>
</tbody>
</table>

IPv6
IPv4
Port Range
2001:db8::1
192.1.2.3
1000-1999
2001:db8::2
192.1.2.3
2000-2999
Lightweight 4over6 Architecture
PCP variant

IPv4

IPv6

Port Range
- 2001:db8::1 192.1.2.3 1000-1999
- 2001:db8::2 192.1.2.3 2000-2999

Stateless DS-Lite CPE implements:
- **DHCPv4 Client Relay Agent** (over IPv6) to configure B4 element IPv4 address
- **ICMP “Port Restricted”** to configure its NAT port range

DHCPv4 (over IPv6) configures CPE B4 IPv4 address

DHCPv6 configures:
- CPE IPv6 address
- CPE IPv6 delegated prefix
- DNS resolver
- AFTR IPv6 address
- IPv6 address of DHCPv4 server

AFTR Per-subscriber mapping table

<table>
<thead>
<tr>
<th>IPv6</th>
<th>IPv4</th>
<th>Port Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>2001:db8::1</td>
<td>192.1.2.3</td>
<td>1000-1999</td>
</tr>
<tr>
<td>2001:db8::2</td>
<td>192.1.2.3</td>
<td>2000-2999</td>
</tr>
</tbody>
</table>

PCP “Port Restricted” message

AFTR
Proposal: ICMP port restricted message as minimum mandatory to implement

- AFTR need to be provisioned with per-subscriber mapping information to enforce ingress filtering
- AFTR must notify the CPE when port is out of assigned range
- Need a new ICMP message type for that
- Just use it to carry correct port range information!
Adding other mechanisms as optional to implement

• DHCPv4 port range option
• PCP port range option

• If CPE is implementing an optional method, it must take intersection of ICMP information and optional method information.
Next Steps
Moving Forward

• Merge two proposals
• Create two new documents:
 – Document 1:
 • General framework (NAT in CPE, Binding table in AFTR)
 • Trade-off between Top-Down and Bottom-up AFTR provisioning model
 • Backward compatibility with DS-Lite & public 4over6
 – Document 2:
 • CPE protocols
 – Reference to DHCPv4 over IPv6 for IPv4 address
 – ICMP port-restricted as minimum mandatory to implement
 – Optional port allocation methods: DHCPv4 & PCP options