
Laminar TCP

TCPM, IETF-83
Mar 30, 2011

Matt Mathis
mattmathis@google.com

draft-mathis-tcpm-laminar-tcp-00

cwnd and ssthresh are overloaded

● cwnd carries both long term and short term state
○ Long term state sometimes gets saved in ssthresh

● ssthresh carries queue size estimate and (temp) cwnd
● Poorly defined interactions between:

○ Application stalls and congestion control
○ Application stalls and loss recovery
○ Reordering and congestion avoidance
○ Other unanticipated concurrent events
○ ...

Laminar: Two separate subsystems

● Pure congestion control
○ New state variable: CCwin
○ Target quantity of data to be sent during each RTT
○ Carries state between successive RTTs
○ Not concerned with timing details, bursts etc

● Transmission scheduling
○ Packet conservation self clock (mostly)
○ Primary state is implicit, computed on every ACK
○ Variables: pipe (3517), total_pipe and DeliveredData
○ Controls exactly when to transmit
○ Tries to follow CCwin
○ Little or no explicit long term state
○ Includes slowstart, burst suppression, (future) pacing

Variables

● CCwin: (Target) Congestion Control window

● pipe: From 3517, data which has been sent but not ACKed
or SACKed

● DeliveredData: Quantity of newly delivered data reported by
this ACK (see PRR)

● total_pipe = pipe+DeliveredData+SndBank; This is all
circulating data

● SndCnt: permission to send computed from the current ACK
Note that the above 4 are recomputed on every ACK

● SndBank: accumulated SndCnt to permit TSO etc

Default (Reno) Congestion Control

On startup:
 CCwin = MAX_WIN

On ACK if not application limited:
 CCwin += MSS*MSS/CCwin // in Bytes

On congestion:
 if CCwin == MAX_WIN
 CCwin = total_pipe/2 // Fraction depends on delayed ACK and ABC
 CCwin = CCwin/2

Except on first loss, CCwin does not depend on pipe!

Default transmission scheduling

sndcnt = DeliveredData // Default is constant window
if total_pipe > CCwin:
 // Proportional Rate Reduction
 sndcnt = (PRR calculation)
if total_pipe < CCwin:
 // Implicit slowstart
 sndcnt = DeliveredData+MIN(DeliveredData, ABClimit)

SndBank += sndcnt
while (SndBank && TSO_ok())
 SndBank -= transmitData()

Algorithm updates

● Draft describes default Laminar versions of:
○ Congestion Avoidance (Reno)
○ Restart after idle
○ Congestion Window Validation
○ Pacing (generic)
○ RTO and F-RTO
○ Undo (generic)
○ Control Block Interdependence
○ Non-SACK TCP

● However there are many opportunities for improvement

Technical summary

● Today cwnd does both CC and transmission scheduling
○ Which are often in conflict
○ Every algorithm has to avoid compromising other uses

● Many pairs of functions interact poorly:
○ Congestion control and loss recovery
○ Application stalls and loss recovery
○ Pacing and CC
○ CC and restart after idle
○ etc

● Laminar separates CC and transmission scheduling
○ They become independent
○ Can evolve separately
○ No "cross subsystem" interactions

TCPM Issues

● Laminar removes ssthresh and cwnd
○ Updates or obsoletes approximately 60 RFC's
○ Interim plan: organize draft parallel to existing docs

● Most algorithm changes are straight forward
○ TCPM style standards (re)design
○ A few details have no precedent or otherwise call for

significant redesign: Move to ICCRG?
● At what level (time?) does TCPM want to get involved?

○ Best if original authors redesign their own algorithms

Backup Slides

Fluid model Congestion Control

On every ACK: // Including during recovery
 CCwin += MAX(DeliveredData, ABClimit)*MSS/CCwin
On retransmission:
 oldCC = CCwin
 if (CCwin == MAX_WIN):
 CCwin = initialCCestimate(total_pipe)
 CCwin = CCwin/2
 undoDelta = oldCC - CCwin
Undo:
 CCwin = MIN(CCwin+undoDelta, MAX_WIN)
 undoDelta = 0

Insensitive to reordering and spurious retransmissions!

