
draft-harkins-tls-pwd

Dan Harkins

Aruba Networks

• What?

– Certificate-less ciphersuites, more secure than PSK

– Instantiates a PAKE protocol called “dragonfly”
• Authentication using a password

• Resistance to off-line dictionary attack

– No, it’s not patented

• What’s wrong with SRP? Nothing, but…
– Nice to have EC support

• While SRP can technically support EC it’s TLS ciphersuites don’t.

– Finite cyclic group is not fixed for each user
• With TLS-SRP the group cannot change, with TLS-PWD it can

• Allows generation of keys that are suitable for ciphersuite’s hash and
cipher– e.g. AES-GCM-256 w/HMAC-SHA384 then use p384 or p521, or
AES-GCM-128 with/HMAC-SHA256 then use p256

– Flexibility for things like draft-pkix-est
• If getting an EC cert might be nice to use an EC group

– Same key exchange used in another protocol for data
plane protection (802.11 mesh, smart grid applications)
• Nice to do the same thing for control plane protection– straight forward

way to provide consistent, system-wide security

rnd-a, mask-a <-- Zq

Hash-to-element

password

PE = password element

$
rnd-b, mask-b <-- Zq

$

scalar-a = (rnd-a + mask-a) mod q -->
element-a = PE–mask-a mod p -->

< -- scalar-b = (rnd-b + mask-b) mod q
< -- element-b = PE–mask-b mod p

(PE scalar-b * element-b)rnd-a mod p = pre-master-secret = (PE scalar-a * element-a)rnd-b mod p

Alice generates Password Element

Alice generates 2 random numbers

Bob generates Password Element

Bob generates 2 random numbers

Alice sends scalar and element to Bob Bob sends scalar and element to Alice

Alice and Bob generate pre-master secret

Hash-to-element

password

PE = password element

How it Works (very broadly)

How it works (changes to TLS)

enum { ff_pwd, ec_pwd } KeyExchangeAlgorithms;

struct {
 opaque salt<1..2^8-1>;
 opaque pwd_p<1..2^16-1>;
 opaque pwd_g<1..2^16-1>;
 opaque pwd_q<1..2^16-1>;
 opaque ff_sscalar<1..2^16-1>;
 opaque ff_selement<1..2^16-1>;
} ServerFFPWDParams;

struct {
 opaque salt<1..2^8-1>;
 ECParameters curve_params;
 opaque ec_sscalar<1..2^8-1>;
 ECPoint ec_selement;
} ServerECPWDParams;

struct {
 select (KeyExchangeAlgorithm) {
 case ec_pwd:
 ServerECPWDParams params;
 case ff_pwd:
 ServerFFPWDParams params;
 } ;
} ServerKeyExchange;

struct {
 opaque ff_cscalar<1..2^16-1>;
 opaque ff_celement<1..2^16-1>;
} ClientFFPWDParams;

struct {
 opaque ec_cscalar<1..2^8-1>;
 ECPoint ec_celement;
} ClientECPWDParams;

struct {
 select (KeyExchangeAlgorithm) {
 case ff_pwd:
 ClientFFPWDParams;
 case ec_pwd:
 ClientECPWDParams;
 } exchange_keys;
} ClientKeyExchange;

• diff v01 v02

– Fixing issues with side channel attack mitigation

– Editorial changes: nits, clean-up

• Big question from Taipei: Is it secure?

Secure Against Passive Attack

• CDH problem:
– given (ga, gb, g)
– produce gab

• dragonfly algorithm:
– given (ra+ma, PE-ma, rb+mb, PE-mb, PE)
– produce PEra*rb

• Reduction:
– generate random r1, r2
– Give attacker (r1, ga, r2, gb, g) to produce g(r1+a)*(r2+b)

– But g(r1+a)*(r2+b) / ((ga)r2 * (gb)r1 * gr1*r2) = gab !

• Conclusion:
– Successful attack against dragonfly would solve CDH

problem, which is computationally infeasible

Secure Against Dictionary Attack?

 • “doesn't seem likely that the protocol can be proven
secure”– Jonathan Katz

• Random oracle model
– assume no key confirmation step in dragonfly, just scalar

and element exchange
– adversary performs MitM, adding 1 to one side’s scalar
– adversary issues “reveal” query to obtain secrets of both

sides
– off-line dictionary attack is now possible

• This is too contrived to worry about as a practical
attack– there is key confirmation and if both sides are
compromised then off-line dictionary attack is the least
of your problems– but it is a problem with a formal
proof of security (at least in Random Oracle model)

• OK, what do I want?

– Someone to interoperate with!

– Ask WG to accept document and move it forward as
a Proposed Standard

or, at the very least

– Stable, published specification

– Codepoints for pwd ciphersuites

CipherSuite TLS_FFCPWD_WITH_3DES_EDE_CBC_SHA = (TBD, TBD);
CipherSuite TLS_FFCPWD_WITH_AES_128_CBC_SHA = (TBD, TBD);
CipherSuite TLS_ECCPWD_WITH_AES_128_CBC_SHA = (TBD, TBD);
CipherSuite TLS_ECCPWD_WITH_AES_128_GCM_SHA256 = (TBD, TBD);
CipherSuite TLS_ECCPWD_WITH_AES_256_GCM_SHA384 = (TBD, TBD);
CipherSuite TLS_FFCPWD_WITH_AES_128_CCM_SHA = (TBD, TBD);
CipherSuite TLS_ECCPWD_WITH_AES_128_CCM_SHA = (TBD, TBD);
CipherSuite TLS_ECCPWD_WITH_AES_128_CCM_SHA256 = (TBD, TBD);
CipherSuite TLS_ECCPWD_WITH_AES_256_CCM_SHA384 = (TBD, TBD);

