VLAN BASED TREE SELECTION FOR MULTI-DESTINATION

Yizhou Li (liyizhou@huawei.com)
Weiguo Hao (haoweiguo@huawei.com)
Somnath Chatterjee (somnath.chatterjee01@gmail.com)

draft-yizhou-trill-tree-selection-00
Each distribution tree SHOULD be pruned per VLAN

- Highest priority tree root
- Announce tree # & ordered list of tree nickname

TREE-USE-ID: trees to be used (for RPF check)
INT-VLAN: interested VLANs (for tree pruning)
4 trees are built
Motivations (1)

- Multicast forwarding table on RB21 has 16K entries.

<table>
<thead>
<tr>
<th>Tree nickname</th>
<th>VLAN</th>
<th>Port list</th>
</tr>
</thead>
<tbody>
<tr>
<td>tree1</td>
<td>1</td>
<td>1, 10, 20, local port 50, local port 60</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>tree1</td>
<td>4095</td>
<td>1, 10, 20, local port 50, local port 60</td>
</tr>
<tr>
<td>tree2</td>
<td>1</td>
<td>2, local port 50, local port 60</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>tree2</td>
<td>4095</td>
<td>2, local port 50, local port 60</td>
</tr>
<tr>
<td>tree3</td>
<td>1</td>
<td>3, 10, 20, local port 50, local port 60</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>tree3</td>
<td>4095</td>
<td>3, 10, 20, local port 50, local port 60</td>
</tr>
<tr>
<td>tree4</td>
<td>1</td>
<td>4, local port 50, local port 60</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>tree4</td>
<td>4095</td>
<td>4, local port 50, local port 60</td>
</tr>
</tbody>
</table>

4K entries for tree1
4K entries for tree2
4K entries for tree3
4K entries for tree4
Motivations (2)

- Table size == n*m entries. (n is #of trees, m is #of VLANs with downstream receivers)
- More entries required if L2/L3 multicast address to be used for finer pruning
 - n*m where m is #of VLANs with downstream receivers * #of multicast groups per VLAN
 - Value of m may exceed 10K in theory
- Linearly increasing with #of trees
- Table size is limited. May share a 8K/16K-entry table with IP multicast/VSI forwarding entries.
- Propose: VLAN based tree selection to reduce the table size
 - still allows the traffic sharing among trees
VLAN based Tree Selection

- Concept:
 - highest priority tree root announces tree-VLAN correspondence which is the value pair of (tree id, VLANs allowed on this tree id)
 - ingress RB selects the tree-VLAN correspondence it is interested in and wishes to use from the list.
 - It should not transmit VLAN x frame on tree y if the highest priority tree root does not say VLAN x is allowed on tree y.
 - Achieved VLAN based load balancing by selecting different trees
VLAN based Tree Selection

Example

- If we let the highest priority tree root announces:
 - (tree1, Vlan 1–1000)
 - (tree2, Vlan 1001–2000)
 - (tree3, Vlan 2001–3000)
 - (tree4, Vlan 3001–4095)

- Ingress selects and announces (tree id, interested vlan) from the announced tree-VLAN correspondence.

- Multicast table entries are reduced to 4K (maximum).

- Table size shrunk:
 - \(n \times m \rightarrow m \)

<table>
<thead>
<tr>
<th>Tree nickname</th>
<th>VLAN</th>
<th>Port list</th>
</tr>
</thead>
<tbody>
<tr>
<td>tree1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>tree1</td>
<td>...</td>
<td></td>
</tr>
<tr>
<td>tree1</td>
<td>1000</td>
<td></td>
</tr>
<tr>
<td>tree2</td>
<td>1001</td>
<td></td>
</tr>
<tr>
<td>tree2</td>
<td>...</td>
<td></td>
</tr>
<tr>
<td>tree2</td>
<td>2000</td>
<td></td>
</tr>
<tr>
<td>tree3</td>
<td>2001</td>
<td></td>
</tr>
<tr>
<td>tree3</td>
<td>...</td>
<td></td>
</tr>
<tr>
<td>tree3</td>
<td>3000</td>
<td></td>
</tr>
<tr>
<td>tree4</td>
<td>3001</td>
<td></td>
</tr>
<tr>
<td>tree4</td>
<td>...</td>
<td></td>
</tr>
<tr>
<td>tree4</td>
<td>4095</td>
<td></td>
</tr>
</tbody>
</table>
Other issues

- Compatibility:
 - New and old RB announces tree-used-id and interested VLAN per RFC6325
 - New RB additionally announces (tree id, interested-vlan) which must be value combinations allowed by the highest priority tree root
 - Always able to tell new or old RB, thus build the table correspondingly in new or old way

- Failure handling
 - Failure of a tree root
 - Failure of the highest priority tree root

- Extensions
 - extended to (VLAN+L2/L3 multicast group) based tree selection
Next Step

- TLV format for (VLAN + L2/L3 multicast address) based tree selection
- More detailed compatibility consideration