IPv6 Flow Label for Server Load Balancing - update

draft-carpenter-v6ops-label-balance-02

Brian Carpenter
Sheng Jiang (Speaker)
Willy Tarreau

March 2012
Why V6OPS Should Care

- Every serious content provider runs load balancers.
- IPv6 support in load balancers has been a delaying factor for IPv6 deployment.
- The flow label may enhance load balancer efficiency, and even act as an incentive for IPv6 adoption.
- No protocol changes – this is implementation and deployment only.
IPv6 Clients in the Internet

Updated Scenario Diagram

Ingress router

DNS-based load splitting

L3/L4 balancer

Possible flow label use

HTTP proxy

HTTP server

HTTP proxy

TLS proxy

HTTP server

HTTP server

HTTP server

HTTP server
Use Flow Label to Reduce Work on L3/L4 Load Balancers

- A new flow is directed to a server according to a L7 load balancing algorithm. The flow label doesn’t help there.

- In subsequent packets, the flow label is immediately available regardless of extension headers – more efficient for ASICs.

 - The 3-tuple \{source address, destination address, flow label\} would be sufficient to identify a transport flow, replacing the traditional 5-tuple

 - It can be reduced to 2 tuple \{source address, flow label\} since destination address is always the same
Clarification: Who Sets The Label?

- According to RFC 6437, the flow label SHOULD be set to a suitable (uniformly distributed) value at the source.

- Until that becomes general practice, a site using it for server load balancing has two choices when the incoming label is zero:
 - Set the label, per RFC 6437, in an ingress router, thus reducing L3/L4 balancer load except for the first packet.
 - Use the full 5-tuple (as today).
Use Flow Label to Reduce Work on L7 Load Balancers

- LBs need to maintain session persistence (i.e. always pick the same server) when a transaction includes several transport flows (even different source addresses)
 - Passive-mode FTP picks a new port number.
 - Sessions mix HTTP and HTTPS.
 - Clients behind a web proxy with a dynamic address pool.

- If applications used the same flow label for all parts of a transaction, LBs could maintain persistence without DPI or session cookies.
 - One flow label per transaction, which may involve multiple transport connections, some of them may come from different source addresses.
 - [RFC6437] a flow is not necessarily 1:1 mapped to a transport connection
New Security Considerations

- Using a flow label as a transaction handle would require some precautions.
- An unguessable flow label will help in avoiding DDOS attacks on a single server, by making it hard to fool the LB algorithm.
- The LB will store the association between a given flow label value and a given server. This will improve session recovery after a server failure, and also makes it harder for an attacker to target a single server, because this association is not known externally.
Possible Benefits

- Assuming that 80-90% of users will reach the net without a proxy, large sites will be able to off-load most of their load balancing into ASIC-based LBs or even switches.
 - Ingress router sets flow label if zero

- The remaining 10-20% of sessions will have persistence issues (multiple ports or source addresses) and will follow the normal route via the L7 LBs.
 - Unless we deploy the extended role (same flow label for all parts of a transaction), newly proposed in this document.
Questions?

Does the WG want to take on this topic?

Thanks