RTCP XR Blocks for Synchronization Delay and Offset Metrics Reporting

draft-asaeda-xrblock-rtcp-xr-synchronization-04

Hitoshi Asaeda (asaeda@wide.ad.jp)
R. Huang (rachel.huang@huawei.com)
Qin Wu (sunseawq@huawei.com)
Overview

• Separated from draft-wu-avt-rtcp-xr-quality-monitoring after split of avt.

• Missed presentation in Taipei meeting

• The XR Blocks report initial Synchronization Delay for all the medias to joins multimedia session and synchronization Offset between RTP streams belonged to the same multimedia session.
 • In compliant with rapid synchronization standard RFC6051.

• Several changes have been made compared to (-02) versions.
 – Support multiple general synchronization offset reporting
 – Add a definition for synchronization offset.
 – Clarify the difference between synchronization delay and offset.
 – Add a reference to tell how to select the reference stream.
 – Editorial Changes.
Issues1# Applicability of synchronization metrics

• Is the initial synchronization delay metric applicable to streams carried in the same RTP session? If it is, how to calculate it?
 – Yes. Based on the similar measurement method in RFC6051.

• Can the general synchronization offset metric deal with intra-media synchronization and inter-media synchronization?
 – This metric can be used to deal with both cases.
 – More focusing on dealing with inter-media synchronization when each stream are carried in the separated RTP streams in the multimedia session.
Issues2# size of synchronization offset 32bit vs 16bit ?

• Current draft support reporting multiple offset values using 32 bits.
• It was proposed to change 32bit synchronization offset to 16bit.
 – Pro:
 • Acceptable synchronization offset will be far less than 65.536 secs.
 • When the number of multiple offset reporting is larger, the large space for these offset fields can be saved.
 – Con:
 • Constraint for reporting block is multiple 32bit words long for each report block
 • Padding issue occurs when the number of offset field is odd.

• Question: Is 16bit for maximum synchronization offset(i.e.,1sec) enough for real time application?
• Recommendation:
 – If the answer is no, still using 32bit.
 – If yes, Using 16bit to replace 32bit.
 • If the measured value is more than 65.536 secs, the value 0xFFFF should be reported to indicate an over-range negative measurement.
Next Step

• Take it as a milestone and adopt it as a work item.
• Questions?