
HTTPbis Working Group R. Fielding, Ed.
Internet-Draft Adobe
Obsoletes: 2616 (if approved) Y. Lafon, Ed.
Intended status: Standards Track W3C
Expires: January 17, 2013 M. Nottingham, Ed.
 Rackspace
 J. Reschke, Ed.
 greenbytes
 July 16, 2012

 HTTP/1.1, part 6: Caching
 draft-ietf-httpbis-p6-cache-20

Abstract

 The Hypertext Transfer Protocol (HTTP) is an application-level
 protocol for distributed, collaborative, hypertext information
 systems. This document defines requirements on HTTP caches and the
 associated header fields that control cache behavior or indicate
 cacheable response messages.

Editorial Note (To be removed by RFC Editor)

 Discussion of this draft takes place on the HTTPBIS working group
 mailing list (ietf-http-wg@w3.org), which is archived at
 <http://lists.w3.org/Archives/Public/ietf-http-wg/>.

 The current issues list is at
 <http://tools.ietf.org/wg/httpbis/trac/report/3> and related
 documents (including fancy diffs) can be found at
 <http://tools.ietf.org/wg/httpbis/>.

 The changes in this draft are summarized in Appendix D.1.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at http://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference

Fielding, et al. Expires January 17, 2013 [Page 1]

Internet-Draft HTTP/1.1, Part 6 July 2012

 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on January 17, 2013.

Copyright Notice

 Copyright (c) 2012 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust’s Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

 This document may contain material from IETF Documents or IETF
 Contributions published or made publicly available before November
 10, 2008. The person(s) controlling the copyright in some of this
 material may not have granted the IETF Trust the right to allow
 modifications of such material outside the IETF Standards Process.
 Without obtaining an adequate license from the person(s) controlling
 the copyright in such materials, this document may not be modified
 outside the IETF Standards Process, and derivative works of it may
 not be created outside the IETF Standards Process, except to format
 it for publication as an RFC or to translate it into languages other
 than English.

Table of Contents

 1. Introduction . 4
 1.1. Purpose . 4
 1.2. Terminology . 4
 1.3. Conformance and Error Handling 6
 1.4. Syntax Notation . 7
 1.4.1. Delta Seconds . 7
 2. Overview of Cache Operation 7
 3. Storing Responses in Caches 8
 3.1. Storing Incomplete Responses 9
 3.2. Storing Responses to Authenticated Requests 9
 4. Constructing Responses from Caches 10
 4.1. Freshness Model . 11
 4.1.1. Calculating Freshness Lifetime 12
 4.1.2. Calculating Heuristic Freshness 12
 4.1.3. Calculating Age 13

Fielding, et al. Expires January 17, 2013 [Page 2]

Internet-Draft HTTP/1.1, Part 6 July 2012

 4.1.4. Serving Stale Responses 15
 4.2. Validation Model . 16
 4.2.1. Freshening Responses with 304 Not Modified 16
 4.3. Using Negotiated Responses 17
 4.4. Combining Partial Content 18
 5. Updating Caches with HEAD Responses 19
 6. Request Methods that Invalidate 19
 7. Header Field Definitions 20
 7.1. Age . 20
 7.2. Cache-Control . 20
 7.2.1. Request Cache-Control Directives 21
 7.2.2. Response Cache-Control Directives 23
 7.2.3. Cache Control Extensions 26
 7.3. Expires . 28
 7.4. Pragma . 28
 7.5. Vary . 29
 7.6. Warning . 30
 7.6.1. 110 Response is Stale 31
 7.6.2. 111 Revalidation Failed 32
 7.6.3. 112 Disconnected Operation 32
 7.6.4. 113 Heuristic Expiration 32
 7.6.5. 199 Miscellaneous Warning 32
 7.6.6. 214 Transformation Applied 32
 7.6.7. 299 Miscellaneous Persistent Warning 32
 7.6.8. Warn Code Extensions 32
 8. History Lists . 33
 9. IANA Considerations . 33
 9.1. Cache Directive Registry 33
 9.2. Warn Code Registry . 34
 9.3. Header Field Registration 34
 10. Security Considerations 35
 11. Acknowledgments . 35
 12. References . 35
 12.1. Normative References 35
 12.2. Informative References 36
 Appendix A. Changes from RFC 2616 36
 Appendix B. Imported ABNF . 37
 Appendix C. Collected ABNF 38
 Appendix D. Change Log (to be removed by RFC Editor before
 publication) . 39
 D.1. Since draft-ietf-httpbis-p6-cache-19 39
 Index . 39

Fielding, et al. Expires January 17, 2013 [Page 3]

Internet-Draft HTTP/1.1, Part 6 July 2012

1. Introduction

 HTTP is typically used for distributed information systems, where
 performance can be improved by the use of response caches. This
 document defines aspects of HTTP/1.1 related to caching and reusing
 response messages.

1.1. Purpose

 An HTTP cache is a local store of response messages and the subsystem
 that controls its message storage, retrieval, and deletion. A cache
 stores cacheable responses in order to reduce the response time and
 network bandwidth consumption on future, equivalent requests. Any
 client or server MAY employ a cache, though a cache cannot be used by
 a server that is acting as a tunnel.

 The goal of caching in HTTP/1.1 is to significantly improve
 performance by reusing a prior response message to satisfy a current
 request. A stored response is considered "fresh", as defined in
 Section 4.1, if the response can be reused without "validation"
 (checking with the origin server to see if the cached response
 remains valid for this request). A fresh cache response can
 therefore reduce both latency and network transfers each time it is
 reused. When a cached response is not fresh, it might still be
 reusable if it can be freshened by validation (Section 4.2) or if the
 origin is unavailable.

1.2. Terminology

 This specification uses a number of terms to refer to the roles
 played by participants in, and objects of, HTTP caching.

 cache

 A conformant implementation of a HTTP cache. Note that this
 implies an HTTP/1.1 cache; this specification does not define
 conformance for HTTP/1.0 caches.

 shared cache

 A cache that stores responses to be reused by more than one user;
 usually (but not always) deployed as part of an intermediary.

 private cache

 A cache that is dedicated to a single user.

Fielding, et al. Expires January 17, 2013 [Page 4]

Internet-Draft HTTP/1.1, Part 6 July 2012

 cacheable

 A response is cacheable if a cache is allowed to store a copy of
 the response message for use in answering subsequent requests.
 Even when a response is cacheable, there might be additional
 constraints on whether a cache can use the stored copy to satisfy
 a particular request.

 explicit expiration time

 The time at which the origin server intends that a representation
 no longer be returned by a cache without further validation.

 heuristic expiration time

 An expiration time assigned by a cache when no explicit expiration
 time is available.

 age

 The age of a response is the time since it was sent by, or
 successfully validated with, the origin server.

 first-hand

 A response is first-hand if the freshness model is not in use;
 i.e., its age is 0.

 freshness lifetime

 The length of time between the generation of a response and its
 expiration time.

 fresh

 A response is fresh if its age has not yet exceeded its freshness
 lifetime.

 stale

 A response is stale if its age has passed its freshness lifetime
 (either explicit or heuristic).

 validator

 A protocol element (e.g., an entity-tag or a Last-Modified time)
 that is used to find out whether a stored response is an
 equivalent copy of a representation. See Section 2.1 of [Part4].

Fielding, et al. Expires January 17, 2013 [Page 5]

Internet-Draft HTTP/1.1, Part 6 July 2012

 strong validator

 A validator that is defined by the origin server such that its
 current value will change if the representation body changes;
 i.e., an entity-tag that is not marked as weak (Section 2.3 of
 [Part4]) or, if no entity-tag is provided, a Last-Modified value
 that is strong in the sense defined by Section 2.2.2 of [Part4].

1.3. Conformance and Error Handling

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in [RFC2119].

 This specification targets conformance criteria according to the role
 of a participant in HTTP communication. Hence, HTTP requirements are
 placed on senders, recipients, clients, servers, user agents,
 intermediaries, origin servers, proxies, gateways, or caches,
 depending on what behavior is being constrained by the requirement.
 See Section 2 of [Part1] for definitions of these terms.

 The verb "generate" is used instead of "send" where a requirement
 differentiates between creating a protocol element and merely
 forwarding a received element downstream.

 An implementation is considered conformant if it complies with all of
 the requirements associated with the roles it partakes in HTTP. Note
 that SHOULD-level requirements are relevant here, unless one of the
 documented exceptions is applicable.

 This document also uses ABNF to define valid protocol elements
 (Section 1.4). In addition to the prose requirements placed upon
 them, senders MUST NOT generate protocol elements that do not match
 the grammar defined by the ABNF rules for those protocol elements
 that are applicable to the sender’s role. If a received protocol
 element is processed, the recipient MUST be able to parse any value
 that would match the ABNF rules for that protocol element, excluding
 only those rules not applicable to the recipient’s role.

 Unless noted otherwise, a recipient MAY attempt to recover a usable
 protocol element from an invalid construct. HTTP does not define
 specific error handling mechanisms except when they have a direct
 impact on security, since different applications of the protocol
 require different error handling strategies. For example, a Web
 browser might wish to transparently recover from a response where the
 Location header field doesn’t parse according to the ABNF, whereas a
 systems control client might consider any form of error recovery to
 be dangerous.

Fielding, et al. Expires January 17, 2013 [Page 6]

Internet-Draft HTTP/1.1, Part 6 July 2012

1.4. Syntax Notation

 This specification uses the Augmented Backus-Naur Form (ABNF)
 notation of [RFC5234] with the list rule extension defined in Section
 1.2 of [Part1]. Appendix B describes rules imported from other
 documents. Appendix C shows the collected ABNF with the list rule
 expanded.

1.4.1. Delta Seconds

 The delta-seconds rule specifies a non-negative integer, representing
 time in seconds.

 delta-seconds = 1*DIGIT

 If an implementation receives a delta-seconds value larger than the
 largest positive integer it can represent, or if any of its
 subsequent calculations overflows, it MUST consider the value to be
 2147483648 (2^31). Recipients parsing a delta-seconds value MUST use
 an arithmetic type of at least 31 bits of range, and senders MUST NOT
 send delta-seconds with a value greater than 2147483648.

2. Overview of Cache Operation

 Proper cache operation preserves the semantics of HTTP transfers
 ([Part2]) while eliminating the transfer of information already held
 in the cache. Although caching is an entirely OPTIONAL feature of
 HTTP, we assume that reusing the cached response is desirable and
 that such reuse is the default behavior when no requirement or
 locally-desired configuration prevents it. Therefore, HTTP cache
 requirements are focused on preventing a cache from either storing a
 non-reusable response or reusing a stored response inappropriately.

 Each cache entry consists of a cache key and one or more HTTP
 responses corresponding to prior requests that used the same key.
 The most common form of cache entry is a successful result of a
 retrieval request: i.e., a 200 (OK) response containing a
 representation of the resource identified by the request target.
 However, it is also possible to cache negative results (e.g., 404
 (Not Found), incomplete results (e.g., 206 (Partial Content)), and
 responses to methods other than GET if the method’s definition allows
 such caching and defines something suitable for use as a cache key.

 The default cache key consists of the request method and target URI.
 However, since HTTP caches in common use today are typically limited
 to caching responses to GET, many implementations simply decline
 other methods and use only the URI as the key.

Fielding, et al. Expires January 17, 2013 [Page 7]

Internet-Draft HTTP/1.1, Part 6 July 2012

 If a request target is subject to content negotiation, its cache
 entry might consist of multiple stored responses, each differentiated
 by a secondary key for the values of the original request’s selecting
 header fields (Section 4.3).

3. Storing Responses in Caches

 A cache MUST NOT store a response to any request, unless:

 o The request method is understood by the cache and defined as being
 cacheable, and

 o the response status code is understood by the cache, and

 o the "no-store" cache directive (see Section 7.2) does not appear
 in request or response header fields, and

 o the "private" cache response directive (see Section 7.2.2.2) does
 not appear in the response, if the cache is shared, and

 o the Authorization header field (see Section 4.1 of [Part7]) does
 not appear in the request, if the cache is shared, unless the
 response explicitly allows it (see Section 3.2), and

 o the response either:

 * contains an Expires header field (see Section 7.3), or

 * contains a max-age response cache directive (see
 Section 7.2.2.7), or

 * contains a s-maxage response cache directive and the cache is
 shared, or

 * contains a Cache Control Extension (see Section 7.2.3) that
 allows it to be cached, or

 * has a status code that can be served with heuristic freshness
 (see Section 4.1.2).

 Note that any of the requirements listed above can be overridden by a
 cache-control extension; see Section 7.2.3.

 In this context, a cache has "understood" a request method or a
 response status code if it recognizes it and implements any cache-
 specific behavior.

 Note that, in normal operation, many caches will not store a response

Fielding, et al. Expires January 17, 2013 [Page 8]

Internet-Draft HTTP/1.1, Part 6 July 2012

 that has neither a cache validator nor an explicit expiration time,
 as such responses are not usually useful to store. However, caches
 are not prohibited from storing such responses.

3.1. Storing Incomplete Responses

 A response message is considered complete when all of the octets
 indicated by the message framing ([Part1]) are received prior to the
 connection being closed. If the request is GET, the response status
 is 200 (OK), and the entire response header block has been received,
 a cache MAY store an incomplete response message body if the cache
 entry is recorded as incomplete. Likewise, a 206 (Partial Content)
 response MAY be stored as if it were an incomplete 200 (OK) cache
 entry. However, a cache MUST NOT store incomplete or partial content
 responses if it does not support the Range and Content-Range header
 fields or if it does not understand the range units used in those
 fields.

 A cache MAY complete a stored incomplete response by making a
 subsequent range request ([Part5]) and combining the successful
 response with the stored entry, as defined in Section 4.4. A cache
 MUST NOT use an incomplete response to answer requests unless the
 response has been made complete or the request is partial and
 specifies a range that is wholly within the incomplete response. A
 cache MUST NOT send a partial response to a client without explicitly
 marking it as such using the 206 (Partial Content) status code.

3.2. Storing Responses to Authenticated Requests

 A shared cache MUST NOT use a cached response to a request with an
 Authorization header field (Section 4.1 of [Part7]) to satisfy any
 subsequent request unless a cache directive that allows such
 responses to be stored is present in the response.

 In this specification, the following Cache-Control response
 directives (Section 7.2.2) have such an effect: must-revalidate,
 public, s-maxage.

 Note that cached responses that contain the "must-revalidate" and/or
 "s-maxage" response directives are not allowed to be served stale
 (Section 4.1.4) by shared caches. In particular, a response with
 either "max-age=0, must-revalidate" or "s-maxage=0" cannot be used to
 satisfy a subsequent request without revalidating it on the origin
 server.

Fielding, et al. Expires January 17, 2013 [Page 9]

Internet-Draft HTTP/1.1, Part 6 July 2012

4. Constructing Responses from Caches

 For a presented request, a cache MUST NOT return a stored response,
 unless:

 o The presented effective request URI (Section 5.5 of [Part1]) and
 that of the stored response match, and

 o the request method associated with the stored response allows it
 to be used for the presented request, and

 o selecting header fields nominated by the stored response (if any)
 match those presented (see Section 4.3), and

 o the presented request does not contain the no-cache pragma
 (Section 7.4), nor the no-cache cache directive (Section 7.2.1),
 unless the stored response is successfully validated
 (Section 4.2), and

 o the stored response does not contain the no-cache cache directive
 (Section 7.2.2.3), unless it is successfully validated
 (Section 4.2), and

 o the stored response is either:

 * fresh (see Section 4.1), or

 * allowed to be served stale (see Section 4.1.4), or

 * successfully validated (see Section 4.2).

 Note that any of the requirements listed above can be overridden by a
 cache-control extension; see Section 7.2.3.

 When a stored response is used to satisfy a request without
 validation, a cache MUST include a single Age header field
 (Section 7.1) in the response with a value equal to the stored
 response’s current_age; see Section 4.1.3.

 A cache MUST write through requests with methods that are unsafe
 (Section 2.1.1 of [Part2]) to the origin server; i.e., a cache is not
 allowed to generate a reply to such a request before having forwarded
 the request and having received a corresponding response.

 Also, note that unsafe requests might invalidate already stored
 responses; see Section 6.

 When more than one suitable response is stored, a cache MUST use the

Fielding, et al. Expires January 17, 2013 [Page 10]

Internet-Draft HTTP/1.1, Part 6 July 2012

 most recent response (as determined by the Date header field). It
 can also forward a request with "Cache-Control: max-age=0" or "Cache-
 Control: no-cache" to disambiguate which response to use.

 A cache that does not have a clock available MUST NOT use stored
 responses without revalidating them on every use. A cache,
 especially a shared cache, SHOULD use a mechanism, such as NTP
 [RFC1305], to synchronize its clock with a reliable external
 standard.

4.1. Freshness Model

 When a response is "fresh" in the cache, it can be used to satisfy
 subsequent requests without contacting the origin server, thereby
 improving efficiency.

 The primary mechanism for determining freshness is for an origin
 server to provide an explicit expiration time in the future, using
 either the Expires header field (Section 7.3) or the max-age response
 cache directive (Section 7.2.2.7). Generally, origin servers will
 assign future explicit expiration times to responses in the belief
 that the representation is not likely to change in a semantically
 significant way before the expiration time is reached.

 If an origin server wishes to force a cache to validate every
 request, it can assign an explicit expiration time in the past to
 indicate that the response is already stale. Compliant caches will
 normally validate the cached response before reusing it for
 subsequent requests (see Section 4.1.4).

 Since origin servers do not always provide explicit expiration times,
 a cache MAY assign a heuristic expiration time when an explicit time
 is not specified, employing algorithms that use other header field
 values (such as the Last-Modified time) to estimate a plausible
 expiration time. This specification does not provide specific
 algorithms, but does impose worst-case constraints on their results.

 The calculation to determine if a response is fresh is:

 response_is_fresh = (freshness_lifetime > current_age)

 The freshness_lifetime is defined in Section 4.1.1; the current_age
 is defined in Section 4.1.3.

 Additionally, clients can influence freshness calculation -- either
 constraining it relaxing it -- by using the max-age and min-fresh
 request cache directives. See Section 7.2.1 for details.

Fielding, et al. Expires January 17, 2013 [Page 11]

Internet-Draft HTTP/1.1, Part 6 July 2012

 Note that freshness applies only to cache operation; it cannot be
 used to force a user agent to refresh its display or reload a
 resource. See Section 8 for an explanation of the difference between
 caches and history mechanisms.

4.1.1. Calculating Freshness Lifetime

 A cache can calculate the freshness lifetime (denoted as
 freshness_lifetime) of a response by using the first match of:

 o If the cache is shared and the s-maxage response cache directive
 (Section 7.2.2.8) is present, use its value, or

 o If the max-age response cache directive (Section 7.2.2.7) is
 present, use its value, or

 o If the Expires response header field (Section 7.3) is present, use
 its value minus the value of the Date response header field, or

 o Otherwise, no explicit expiration time is present in the response.
 A heuristic freshness lifetime might be applicable; see
 Section 4.1.2.

 Note that this calculation is not vulnerable to clock skew, since all
 of the information comes from the origin server.

 When there is more than one value present for a given directive
 (e.g., two Expires header fields, multiple Cache-Control: max-age
 directives), it is considered invalid. Caches are encouraged to
 consider responses that have invalid freshness information to be
 stale.

4.1.2. Calculating Heuristic Freshness

 If no explicit expiration time is present in a stored response that
 has a status code whose definition allows heuristic freshness to be
 used (including the following in Section 4 of [Part2]: 200 (OK), 203
 (Non-Authoritative Information), 206 (Partial Content), 300 (Multiple
 Choices), 301 (Moved Permanently) and 410 (Gone)), a cache MAY
 calculate a heuristic expiration time. A cache MUST NOT use
 heuristics to determine freshness for responses with status codes
 that do not explicitly allow it.

 When a heuristic is used to calculate freshness lifetime, a cache
 SHOULD attach a Warning header field with a 113 warn-code to the
 response if its current_age is more than 24 hours and such a warning
 is not already present.

Fielding, et al. Expires January 17, 2013 [Page 12]

Internet-Draft HTTP/1.1, Part 6 July 2012

 Also, if the response has a Last-Modified header field (Section 2.2
 of [Part4]), caches are encouraged to use a heuristic expiration
 value that is no more than some fraction of the interval since that
 time. A typical setting of this fraction might be 10%.

 Note: Section 13.9 of [RFC2616] prohibited caches from calculating
 heuristic freshness for URIs with query components (i.e., those
 containing ’?’). In practice, this has not been widely
 implemented. Therefore, servers are encouraged to send explicit
 directives (e.g., Cache-Control: no-cache) if they wish to
 preclude caching.

4.1.3. Calculating Age

 HTTP/1.1 uses the Age header field to convey the estimated age of the
 response message when obtained from a cache. The Age field value is
 the cache’s estimate of the amount of time since the response was
 generated or validated by the origin server. In essence, the Age
 value is the sum of the time that the response has been resident in
 each of the caches along the path from the origin server, plus the
 amount of time it has been in transit along network paths.

 The following data is used for the age calculation:

 age_value

 The term "age_value" denotes the value of the Age header field
 (Section 7.1), in a form appropriate for arithmetic operation; or
 0, if not available.

 date_value

 HTTP/1.1 requires origin servers to send a Date header field, if
 possible, with every response, giving the time at which the
 response was generated. The term "date_value" denotes the value
 of the Date header field, in a form appropriate for arithmetic
 operations. See Section 9.10 of [Part2] for the definition of the
 Date header field, and for requirements regarding responses
 without it.

 now

 The term "now" means "the current value of the clock at the host
 performing the calculation". A cache SHOULD use NTP ([RFC1305])
 or some similar protocol to synchronize its clocks to a globally
 accurate time standard.

Fielding, et al. Expires January 17, 2013 [Page 13]

Internet-Draft HTTP/1.1, Part 6 July 2012

 request_time

 The current value of the clock at the host at the time the request
 resulting in the stored response was made.

 response_time

 The current value of the clock at the host at the time the
 response was received.

 A response’s age can be calculated in two entirely independent ways:

 1. the "apparent_age": response_time minus date_value, if the local
 clock is reasonably well synchronized to the origin server’s
 clock. If the result is negative, the result is replaced by
 zero.

 2. the "corrected_age_value", if all of the caches along the
 response path implement HTTP/1.1. A cache MUST interpret this
 value relative to the time the request was initiated, not the
 time that the response was received.

 apparent_age = max(0, response_time - date_value);

 response_delay = response_time - request_time;
 corrected_age_value = age_value + response_delay;

 These SHOULD be combined as

 corrected_initial_age = max(apparent_age, corrected_age_value);

 unless the cache is confident in the value of the Age header field
 (e.g., because there are no HTTP/1.0 hops in the Via header field),
 in which case the corrected_age_value MAY be used as the
 corrected_initial_age.

 The current_age of a stored response can then be calculated by adding
 the amount of time (in seconds) since the stored response was last
 validated by the origin server to the corrected_initial_age.

 resident_time = now - response_time;
 current_age = corrected_initial_age + resident_time;

 Additionally, to avoid common problems in date parsing:

Fielding, et al. Expires January 17, 2013 [Page 14]

Internet-Draft HTTP/1.1, Part 6 July 2012

 o HTTP/1.1 clients and caches SHOULD assume that an RFC-850 date
 which appears to be more than 50 years in the future is in fact in
 the past (this helps solve the "year 2000" problem).

 o Although all date formats are specified to be case-sensitive,
 recipients SHOULD match day, week and timezone names case-
 insensitively.

 o An HTTP/1.1 implementation MAY internally represent a parsed
 Expires date as earlier than the proper value, but MUST NOT
 internally represent a parsed Expires date as later than the
 proper value.

 o All expiration-related calculations MUST be done in GMT. The
 local time zone MUST NOT influence the calculation or comparison
 of an age or expiration time.

 o If an HTTP header field incorrectly carries a date value with a
 time zone other than GMT, it MUST be converted into GMT using the
 most conservative possible conversion.

4.1.4. Serving Stale Responses

 A "stale" response is one that either has explicit expiry information
 or is allowed to have heuristic expiry calculated, but is not fresh
 according to the calculations in Section 4.1.

 A cache MUST NOT return a stale response if it is prohibited by an
 explicit in-protocol directive (e.g., by a "no-store" or "no-cache"
 cache directive, a "must-revalidate" cache-response-directive, or an
 applicable "s-maxage" or "proxy-revalidate" cache-response-directive;
 see Section 7.2.2).

 A cache MUST NOT return stale responses unless it is disconnected
 (i.e., it cannot contact the origin server or otherwise find a
 forward path) or doing so is explicitly allowed (e.g., by the max-
 stale request directive; see Section 7.2.1).

 A cache SHOULD append a Warning header field with the 110 warn-code
 (see Section 7.6) to stale responses. Likewise, a cache SHOULD add
 the 112 warn-code to stale responses if the cache is disconnected.

 If a cache receives a first-hand response (either an entire response,
 or a 304 (Not Modified) response) that it would normally forward to
 the requesting client, and the received response is no longer fresh,
 the cache can forward it to the requesting client without adding a
 new Warning (but without removing any existing Warning header
 fields). A cache shouldn’t attempt to validate a response simply

Fielding, et al. Expires January 17, 2013 [Page 15]

Internet-Draft HTTP/1.1, Part 6 July 2012

 because that response became stale in transit.

4.2. Validation Model

 When a cache has one or more stored responses for a requested URI,
 but cannot serve any of them (e.g., because they are not fresh, or
 one cannot be selected; see Section 4.3), it can use the conditional
 request mechanism [Part4] in the forwarded request to give the origin
 server an opportunity to both select a valid stored response to be
 used, and to update it. This process is known as "validating" or
 "revalidating" the stored response.

 When sending such a conditional request, a cache adds an If-Modified-
 Since header field whose value is that of the Last-Modified header
 field from the selected (see Section 4.3) stored response, if
 available.

 Additionally, a cache can add an If-None-Match header field whose
 value is that of the ETag header field(s) from all responses stored
 for the requested URI, if present. However, if any of the stored
 responses contains only partial content, the cache shouldn’t include
 its entity-tag in the If-None-Match header field unless the request
 is for a range that would be fully satisfied by that stored response.

 Cache handling of a response to a conditional request is dependent
 upon its status code:

 o A 304 (Not Modified) response status code indicates that the
 stored response can be updated and reused; see Section 4.2.1.

 o A full response (i.e., one with a response body) indicates that
 none of the stored responses nominated in the conditional request
 is suitable. Instead, the cache can use the full response to
 satisfy the request and MAY replace the stored response(s).

 o However, if a cache receives a 5xx (Server Error) response while
 attempting to validate a response, it can either forward this
 response to the requesting client, or act as if the server failed
 to respond. In the latter case, it can return a previously stored
 response (see Section 4.1.4).

4.2.1. Freshening Responses with 304 Not Modified

 When a cache receives a 304 (Not Modified) response and already has
 one or more stored 200 (OK) responses for the same cache key, the
 cache needs to identify which of the stored responses are updated by
 this new response and then update the stored response(s) with the new
 information provided in the 304 response.

Fielding, et al. Expires January 17, 2013 [Page 16]

Internet-Draft HTTP/1.1, Part 6 July 2012

 o If the new response contains a strong validator, then that strong
 validator identifies the selected representation. All of the
 stored responses with the same strong validator are selected. If
 none of the stored responses contain the same strong validator,
 then this new response corresponds to a new selected
 representation and MUST NOT update the existing stored responses.

 o If the new response contains a weak validator and that validator
 corresponds to one of the cache’s stored responses, then the most
 recent of those matching stored responses is selected.

 o If the new response does not include any form of validator, there
 is only one stored response, and that stored response also lacks a
 validator, then that stored response is selected.

 If a stored response is selected for update, the cache MUST:

 o delete any Warning header fields in the stored response with warn-
 code 1xx (see Section 7.6);

 o retain any Warning header fields in the stored response with warn-
 code 2xx; and,

 o use other header fields provided in the 304 (Not Modified)
 response to replace all instances of the corresponding header
 fields in the stored response.

4.3. Using Negotiated Responses

 When a cache receives a request that can be satisfied by a stored
 response that has a Vary header field (Section 7.5), it MUST NOT use
 that response unless all of the selecting header fields nominated by
 the Vary header field match in both the original request (i.e., that
 associated with the stored response), and the presented request.

 The selecting header fields from two requests are defined to match if
 and only if those in the first request can be transformed to those in
 the second request by applying any of the following:

 o adding or removing whitespace, where allowed in the header field’s
 syntax

 o combining multiple header fields with the same field name (see
 Section 3.2 of [Part1])

 o normalizing both header field values in a way that is known to
 have identical semantics, according to the header field’s
 specification (e.g., re-ordering field values when order is not

Fielding, et al. Expires January 17, 2013 [Page 17]

Internet-Draft HTTP/1.1, Part 6 July 2012

 significant; case-normalization, where values are defined to be
 case-insensitive)

 If (after any normalization that might take place) a header field is
 absent from a request, it can only match another request if it is
 also absent there.

 A Vary header field-value of "*" always fails to match, and
 subsequent requests to that resource can only be properly interpreted
 by the origin server.

 The stored response with matching selecting header fields is known as
 the selected response.

 If multiple selected responses are available, the most recent
 response (as determined by the Date header field) is used; see
 Section 4.

 If no selected response is available, the cache can forward the
 presented request to the origin server in a conditional request; see
 Section 4.2.

4.4. Combining Partial Content

 A response might transfer only a partial representation if the
 connection closed prematurely or if the request used one or more
 Range specifiers ([Part5]). After several such transfers, a cache
 might have received several ranges of the same representation. A
 cache MAY combine these ranges into a single stored response, and
 reuse that response to satisfy later requests, if they all share the
 same strong validator and the cache complies with the client
 requirements in Section 4.2 of [Part5].

 When combining the new response with one or more stored responses, a
 cache MUST:

 o delete any Warning header fields in the stored response with warn-
 code 1xx (see Section 7.6);

 o retain any Warning header fields in the stored response with warn-
 code 2xx; and,

 o use other header fields provided in the new response, aside from
 Content-Range, to replace all instances of the corresponding
 header fields in the stored response.

Fielding, et al. Expires January 17, 2013 [Page 18]

Internet-Draft HTTP/1.1, Part 6 July 2012

5. Updating Caches with HEAD Responses

 A response to the HEAD method is identical to what an equivalent
 request made with a GET would have been, except it lacks a body.
 This property of HEAD responses is used to both invalidate and update
 cached GET responses.

 If one or more stored GET responses can be selected (as per
 Section 4.3) for a HEAD request, and the Content-Length, ETag or
 Last-Modified value of a HEAD response differs from that in a
 selected GET response, the cache MUST consider that selected response
 to be stale.

 If the Content-Length, ETag and Last-Modified values of a HEAD
 response (when present) are the same as that in a selected GET
 response (as per Section 4.3), the cache SHOULD update the remaining
 header fields in the stored response using the following rules:

 o delete any Warning header fields in the stored response with warn-
 code 1xx (see Section 7.6);

 o retain any Warning header fields in the stored response with warn-
 code 2xx; and,

 o use other header fields provided in the response to replace all
 instances of the corresponding header fields in the stored
 response.

6. Request Methods that Invalidate

 Because unsafe request methods (Section 2.1.1 of [Part2]) such as
 PUT, POST or DELETE have the potential for changing state on the
 origin server, intervening caches can use them to keep their contents
 up-to-date.

 A cache MUST invalidate the effective Request URI (Section 5.5 of
 [Part1]) as well as the URI(s) in the Location and Content-Location
 response header fields (if present) when a non-error response to a
 request with an unsafe method is received.

 However, a cache MUST NOT invalidate a URI from a Location or
 Content-Location response header field if the host part of that URI
 differs from the host part in the effective request URI (Section 5.5
 of [Part1]). This helps prevent denial of service attacks.

 A cache MUST invalidate the effective request URI (Section 5.5 of
 [Part1]) when it receives a non-error response to a request with a
 method whose safety is unknown.

Fielding, et al. Expires January 17, 2013 [Page 19]

Internet-Draft HTTP/1.1, Part 6 July 2012

 Here, a "non-error response" is one with a 2xx (Successful) or 3xx
 (Redirection) status code. "Invalidate" means that the cache will
 either remove all stored responses related to the effective request
 URI, or will mark these as "invalid" and in need of a mandatory
 validation before they can be returned in response to a subsequent
 request.

 Note that this does not guarantee that all appropriate responses are
 invalidated. For example, the request that caused the change at the
 origin server might not have gone through the cache where a response
 is stored.

7. Header Field Definitions

 This section defines the syntax and semantics of HTTP/1.1 header
 fields related to caching.

7.1. Age

 The "Age" header field conveys the sender’s estimate of the amount of
 time since the response was generated or successfully validated at
 the origin server. Age values are calculated as specified in
 Section 4.1.3.

 Age = delta-seconds

 Age field-values are non-negative integers, representing time in
 seconds (see Section 1.4.1).

 The presence of an Age header field in a response implies that a
 response is not first-hand. However, the converse is not true, since
 HTTP/1.0 caches might not implement the Age header field.

7.2. Cache-Control

 The "Cache-Control" header field is used to specify directives for
 caches along the request/response chain. Such cache directives are
 unidirectional in that the presence of a directive in a request does
 not imply that the same directive is to be given in the response.

 A cache MUST obey the requirements of the Cache-Control directives
 defined in this section. See Section 7.2.3 for information about how
 Cache-Control directives defined elsewhere are handled.

 Note: HTTP/1.0 caches might not implement Cache-Control and might
 only implement Pragma: no-cache (see Section 7.4).

 A proxy, whether or not it implements a cache, MUST pass cache

Fielding, et al. Expires January 17, 2013 [Page 20]

Internet-Draft HTTP/1.1, Part 6 July 2012

 directives through in forwarded messages, regardless of their
 significance to that application, since the directives might be
 applicable to all recipients along the request/response chain. It is
 not possible to target a directive to a specific cache.

 Cache directives are identified by a token, to be compared case-
 insensitively, and have an optional argument, that can use both token
 and quoted-string syntax. For the directives defined below that
 define arguments, recipients ought to accept both forms, even if one
 is documented to be preferred. For any directive not defined by this
 specification, recipients MUST accept both forms.

 Cache-Control = 1#cache-directive

 cache-directive = token ["=" (token / quoted-string)]

 For the cache directives defined below, no argument is defined (nor
 allowed) otherwise stated otherwise.

7.2.1. Request Cache-Control Directives

7.2.1.1. no-cache

 The "no-cache" request directive indicates that a cache MUST NOT use
 a stored response to satisfy the request without successful
 validation on the origin server.

7.2.1.2. no-store

 The "no-store" request directive indicates that a cache MUST NOT
 store any part of either this request or any response to it. This
 directive applies to both private and shared caches. "MUST NOT
 store" in this context means that the cache MUST NOT intentionally
 store the information in non-volatile storage, and MUST make a best-
 effort attempt to remove the information from volatile storage as
 promptly as possible after forwarding it.

 This directive is NOT a reliable or sufficient mechanism for ensuring
 privacy. In particular, malicious or compromised caches might not
 recognize or obey this directive, and communications networks might
 be vulnerable to eavesdropping.

 Note that if a request containing this directive is satisfied from a
 cache, the no-store request directive does not apply to the already
 stored response.

Fielding, et al. Expires January 17, 2013 [Page 21]

Internet-Draft HTTP/1.1, Part 6 July 2012

7.2.1.3. max-age

 Argument syntax:

 delta-seconds (see Section 1.4.1)

 The "max-age" request directive indicates that the client is
 unwilling to accept a response whose age is greater than the
 specified number of seconds. Unless the max-stale request directive
 is also present, the client is not willing to accept a stale
 response.

 Note: This directive uses the token form of the argument syntax;
 e.g., ’max-age=5’, not ’max-age="5"’. Senders SHOULD NOT use the
 quoted-string form.

7.2.1.4. max-stale

 Argument syntax:

 delta-seconds (see Section 1.4.1)

 The "max-stale" request directive indicates that the client is
 willing to accept a response that has exceeded its expiration time.
 If max-stale is assigned a value, then the client is willing to
 accept a response that has exceeded its expiration time by no more
 than the specified number of seconds. If no value is assigned to
 max-stale, then the client is willing to accept a stale response of
 any age.

 Note: This directive uses the token form of the argument syntax;
 e.g., ’max-stale=10’, not ’max-stale="10"’. Senders SHOULD NOT use
 the quoted-string form.

7.2.1.5. min-fresh

 Argument syntax:

 delta-seconds (see Section 1.4.1)

 The "min-fresh" request directive indicates that the client is
 willing to accept a response whose freshness lifetime is no less than
 its current age plus the specified time in seconds. That is, the
 client wants a response that will still be fresh for at least the
 specified number of seconds.

 Note: This directive uses the token form of the argument syntax;
 e.g., ’min-fresh=20’, not ’min-fresh="20"’. Senders SHOULD NOT use

Fielding, et al. Expires January 17, 2013 [Page 22]

Internet-Draft HTTP/1.1, Part 6 July 2012

 the quoted-string form.

7.2.1.6. no-transform

 The "no-transform" request directive indicates that an intermediary
 (whether or not it implements a cache) MUST NOT change the Content-
 Encoding, Content-Range or Content-Type request header fields, nor
 the request representation.

7.2.1.7. only-if-cached

 The "only-if-cached" request directive indicates that the client only
 wishes to obtain a stored response. If it receives this directive, a
 cache SHOULD either respond using a stored response that is
 consistent with the other constraints of the request, or respond with
 a 504 (Gateway Timeout) status code. If a group of caches is being
 operated as a unified system with good internal connectivity, a
 member cache MAY forward such a request within that group of caches.

7.2.2. Response Cache-Control Directives

7.2.2.1. public

 The "public" response directive indicates that a response whose
 associated request contains an ’Authentication’ header MAY be stored
 (see Section 3.2).

7.2.2.2. private

 Argument syntax:

 #field-name

 The "private" response directive indicates that the response message
 is intended for a single user and MUST NOT be stored by a shared
 cache. A private cache MAY store the response.

 If the private response directive specifies one or more field-names,
 this requirement is limited to the field-values associated with the
 listed response header fields. That is, a shared cache MUST NOT
 store the specified field-names(s), whereas it MAY store the
 remainder of the response message.

 The field-names given are not limited to the set of standard header
 fields defined by this specification. Field names are case-
 insensitive.

 Note: This usage of the word "private" only controls where the

Fielding, et al. Expires January 17, 2013 [Page 23]

Internet-Draft HTTP/1.1, Part 6 July 2012

 response can be stored; it cannot ensure the privacy of the message
 content. Also, private response directives with field-names are
 often handled by implementations as if an unqualified private
 directive was received; i.e., the special handling for the qualified
 form is not widely implemented.

 Note: This directive uses the quoted-string form of the argument
 syntax. Senders SHOULD NOT use the token form (even if quoting
 appears not to be needed for single-entry lists).

7.2.2.3. no-cache

 Argument syntax:

 #field-name

 The "no-cache" response directive indicates that the response MUST
 NOT be used to satisfy a subsequent request without successful
 validation on the origin server. This allows an origin server to
 prevent a cache from using it to satisfy a request without contacting
 it, even by caches that have been configured to return stale
 responses.

 If the no-cache response directive specifies one or more field-names,
 then a cache MAY use the response to satisfy a subsequent request,
 subject to any other restrictions on caching. However, any header
 fields in the response that have the field-name(s) listed MUST NOT be
 sent in the response to a subsequent request without successful
 revalidation with the origin server. This allows an origin server to
 prevent the re-use of certain header fields in a response, while
 still allowing caching of the rest of the response.

 The field-names given are not limited to the set of standard header
 fields defined by this specification. Field names are case-
 insensitive.

 Note: Many HTTP/1.0 caches will not recognize or obey this directive.
 Also, no-cache response directives with field-names are often handled
 by implementations as if an unqualified no-cache directive was
 received; i.e., the special handling for the qualified form is not
 widely implemented.

 Note: This directive uses the quoted-string form of the argument
 syntax. Senders SHOULD NOT use the token form (even if quoting
 appears not to be needed for single-entry lists).

Fielding, et al. Expires January 17, 2013 [Page 24]

Internet-Draft HTTP/1.1, Part 6 July 2012

7.2.2.4. no-store

 The "no-store" response directive indicates that a cache MUST NOT
 store any part of either the immediate request or response. This
 directive applies to both private and shared caches. "MUST NOT
 store" in this context means that the cache MUST NOT intentionally
 store the information in non-volatile storage, and MUST make a best-
 effort attempt to remove the information from volatile storage as
 promptly as possible after forwarding it.

 This directive is NOT a reliable or sufficient mechanism for ensuring
 privacy. In particular, malicious or compromised caches might not
 recognize or obey this directive, and communications networks might
 be vulnerable to eavesdropping.

7.2.2.5. must-revalidate

 The "must-revalidate" response directive indicates that once it has
 become stale, a cache MUST NOT use the response to satisfy subsequent
 requests without successful validation on the origin server.

 The must-revalidate directive is necessary to support reliable
 operation for certain protocol features. In all circumstances a
 cache MUST obey the must-revalidate directive; in particular, if a
 cache cannot reach the origin server for any reason, it MUST generate
 a 504 (Gateway Timeout) response.

 The must-revalidate directive ought to be used by servers if and only
 if failure to validate a request on the representation could result
 in incorrect operation, such as a silently unexecuted financial
 transaction.

7.2.2.6. proxy-revalidate

 The "proxy-revalidate" response directive has the same meaning as the
 must-revalidate response directive, except that it does not apply to
 private caches.

7.2.2.7. max-age

 Argument syntax:

 delta-seconds (see Section 1.4.1)

 The "max-age" response directive indicates that the response is to be
 considered stale after its age is greater than the specified number
 of seconds.

Fielding, et al. Expires January 17, 2013 [Page 25]

Internet-Draft HTTP/1.1, Part 6 July 2012

 Note: This directive uses the token form of the argument syntax;
 e.g., ’max-age=5’, not ’max-age="5"’. Senders SHOULD NOT use the
 quoted-string form.

7.2.2.8. s-maxage

 Argument syntax:

 delta-seconds (see Section 1.4.1)

 The "s-maxage" response directive indicates that, in shared caches,
 the maximum age specified by this directive overrides the maximum age
 specified by either the max-age directive or the Expires header
 field. The s-maxage directive also implies the semantics of the
 proxy-revalidate response directive.

 Note: This directive uses the token form of the argument syntax;
 e.g., ’s-maxage=10’, not ’s-maxage="10"’. Senders SHOULD NOT use the
 quoted-string form.

7.2.2.9. no-transform

 The "no-transform" response directive indicates that an intermediary
 (regardless of whether it implements a cache) MUST NOT change the
 Content-Encoding, Content-Range or Content-Type response header
 fields, nor the response representation.

7.2.3. Cache Control Extensions

 The Cache-Control header field can be extended through the use of one
 or more cache-extension tokens, each with an optional value.
 Informational extensions (those that do not require a change in cache
 behavior) can be added without changing the semantics of other
 directives. Behavioral extensions are designed to work by acting as
 modifiers to the existing base of cache directives. Both the new
 directive and the standard directive are supplied, such that
 applications that do not understand the new directive will default to
 the behavior specified by the standard directive, and those that
 understand the new directive will recognize it as modifying the
 requirements associated with the standard directive. In this way,
 extensions to the cache-control directives can be made without
 requiring changes to the base protocol.

 This extension mechanism depends on an HTTP cache obeying all of the
 cache-control directives defined for its native HTTP-version, obeying
 certain extensions, and ignoring all directives that it does not
 understand.

Fielding, et al. Expires January 17, 2013 [Page 26]

Internet-Draft HTTP/1.1, Part 6 July 2012

 For example, consider a hypothetical new response directive called
 "community" that acts as a modifier to the private directive. We
 define this new directive to mean that, in addition to any private
 cache, any cache that is shared only by members of the community
 named within its value is allowed to cache the response. An origin
 server wishing to allow the UCI community to use an otherwise private
 response in their shared cache(s) could do so by including

 Cache-Control: private, community="UCI"

 A cache seeing this header field will act correctly even if the cache
 does not understand the community cache-extension, since it will also
 see and understand the private directive and thus default to the safe
 behavior.

 A cache MUST ignore unrecognized cache directives; it is assumed that
 any cache directive likely to be unrecognized by an HTTP/1.1 cache
 will be combined with standard directives (or the response’s default
 cacheability) such that the cache behavior will remain minimally
 correct even if the cache does not understand the extension(s).

 New extension directives ought to consider defining:

 o What it means for a directive to be specified multiple times,

 o When the directive does not take an argument, what it means when
 an argument is present,

 o When the directive requires an argument, what it means when it is
 missing.

 The HTTP Cache Directive Registry defines the name space for the
 cache directives.

 A registration MUST include the following fields:

 o Cache Directive Name

 o Pointer to specification text

 Values to be added to this name space require IETF Review (see
 [RFC5226], Section 4.1).

 The registry itself is maintained at
 <http://www.iana.org/assignments/http-cache-directives>.

Fielding, et al. Expires January 17, 2013 [Page 27]

Internet-Draft HTTP/1.1, Part 6 July 2012

7.3. Expires

 The "Expires" header field gives the date/time after which the
 response is considered stale. See Section 4.1 for further discussion
 of the freshness model.

 The presence of an Expires field does not imply that the original
 resource will change or cease to exist at, before, or after that
 time.

 The field-value is an absolute date and time as defined by HTTP-date
 in Section 5.1 of [Part2]; a sender MUST use the rfc1123-date format.

 Expires = HTTP-date

 For example

 Expires: Thu, 01 Dec 1994 16:00:00 GMT

 A cache MUST treat other invalid date formats, especially including
 the value "0", as in the past (i.e., "already expired").

 Note: If a response includes a Cache-Control field with the max-
 age directive (see Section 7.2.2.7), that directive overrides the
 Expires field. Likewise, the s-maxage directive (Section 7.2.2.8)
 overrides the Expires header fieldin shared caches.

 Historically, HTTP required the Expires field-value to be no more
 than a year in the future. While longer freshness lifetimes are no
 longer prohibited, extremely large values have been demonstrated to
 cause problems (e.g., clock overflows due to use of 32-bit integers
 for time values), and many caches will evict a response far sooner
 than that. Therefore, senders ought not produce them.

 An origin server without a clock MUST NOT assign Expires values to a
 response unless these values were associated with the resource by a
 system or user with a reliable clock. It MAY assign an Expires value
 that is known, at or before server configuration time, to be in the
 past (this allows "pre-expiration" of responses without storing
 separate Expires values for each resource).

7.4. Pragma

 The "Pragma" header field allows backwards compatibility with
 HTTP/1.0 caches, so that clients can specify a "no-cache" request
 that they will understand (as Cache-Control was not defined until
 HTTP/1.1). When the Cache-Control header field is also present and
 understood in a request, Pragma is ignored.

Fielding, et al. Expires January 17, 2013 [Page 28]

Internet-Draft HTTP/1.1, Part 6 July 2012

 In HTTP/1.0, Pragma was defined as an extensible field for
 implementation-specified directives for recipients. This
 specification deprecates such extensions to improve interoperability.

 Pragma = 1#pragma-directive
 pragma-directive = "no-cache" / extension-pragma
 extension-pragma = token ["=" (token / quoted-string)]

 When the Cache-Control header field is not present in a request, the
 no-cache request pragma-directive MUST have the same effect on caches
 as if "Cache-Control: no-cache" were present (see Section 7.2.1).

 When sending a no-cache request, a client ought to include both the
 pragma and cache-control directives, unless Cache-Control: no-cache
 is purposefully omitted to target other Cache-Control response
 directives at HTTP/1.1 caches. For example:

 GET / HTTP/1.1
 Host: www.example.com
 Cache-Control: max-age=30
 Pragma: no-cache

 will constrain HTTP/1.1 caches to serve a response no older than 30
 seconds, while precluding implementations that do not understand
 Cache-Control from serving a cached response.

 Note: Because the meaning of "Pragma: no-cache" in responses is
 not specified, it does not provide a reliable replacement for
 "Cache-Control: no-cache" in them.

7.5. Vary

 The "Vary" header field conveys the set of header fields that were
 used to select the representation.

 Caches use this information, in part, to determine whether a stored
 response can be used to satisfy a given request; see Section 4.3.

 In uncacheable or stale responses, the Vary field value advises the
 user agent about the criteria that were used to select the
 representation.

 Vary = "*" / 1#field-name

 The set of header fields named by the Vary field value is known as
 the selecting header fields.

Fielding, et al. Expires January 17, 2013 [Page 29]

Internet-Draft HTTP/1.1, Part 6 July 2012

 A server SHOULD include a Vary header field with any cacheable
 response that is subject to server-driven negotiation. Doing so
 allows a cache to properly interpret future requests on that resource
 and informs the user agent about the presence of negotiation on that
 resource. A server MAY include a Vary header field with a non-
 cacheable response that is subject to server-driven negotiation,
 since this might provide the user agent with useful information about
 the dimensions over which the response varies at the time of the
 response.

 A Vary field value of "*" signals that unspecified parameters not
 limited to the header fields (e.g., the network address of the
 client), play a role in the selection of the response representation;
 therefore, a cache cannot determine whether this response is
 appropriate. A proxy MUST NOT generate the "*" value.

 The field-names given are not limited to the set of standard header
 fields defined by this specification. Field names are case-
 insensitive.

7.6. Warning

 The "Warning" header field is used to carry additional information
 about the status or transformation of a message that might not be
 reflected in the message. This information is typically used to warn
 about possible incorrectness introduced by caching operations or
 transformations applied to the payload of the message.

 Warnings can be used for other purposes, both cache-related and
 otherwise. The use of a warning, rather than an error status code,
 distinguishes these responses from true failures.

 Warning header fields can in general be applied to any message,
 however some warn-codes are specific to caches and can only be
 applied to response messages.

 Warning = 1#warning-value

 warning-value = warn-code SP warn-agent SP warn-text
 [SP warn-date]

 warn-code = 3DIGIT
 warn-agent = (uri-host [":" port]) / pseudonym
 ; the name or pseudonym of the server adding
 ; the Warning header field, for use in debugging
 warn-text = quoted-string
 warn-date = DQUOTE HTTP-date DQUOTE

Fielding, et al. Expires January 17, 2013 [Page 30]

Internet-Draft HTTP/1.1, Part 6 July 2012

 Multiple warnings can be attached to a response (either by the origin
 server or by a cache), including multiple warnings with the same code
 number, only differing in warn-text.

 When this occurs, the user agent SHOULD inform the user of as many of
 them as possible, in the order that they appear in the response.

 Systems that generate multiple Warning header fields are encouraged
 to order them with this user agent behavior in mind. New Warning
 header fields are added after any existing Warning header fields.

 Warnings are assigned three digit warn-codes. The first digit
 indicates whether the Warning is required to be deleted from a stored
 response after validation:

 o 1xx Warnings describe the freshness or validation status of the
 response, and so MUST be deleted by a cache after validation.
 They can only be generated by a cache when validating a cached
 entry, and MUST NOT be generated in any other situation.

 o 2xx Warnings describe some aspect of the representation that is
 not rectified by a validation (for example, a lossy compression of
 the representation) and MUST NOT be deleted by a cache after
 validation, unless a full response is returned, in which case they
 MUST be.

 If an implementation sends a message with one or more Warning header
 fields to a receiver whose version is HTTP/1.0 or lower, then the
 sender MUST include in each warning-value a warn-date that matches
 the Date header field in the message.

 If a system receives a message with a warning-value that includes a
 warn-date, and that warn-date is different from the Date value in the
 response, then that warning-value MUST be deleted from the message
 before storing, forwarding, or using it. (preventing the consequences
 of naive caching of Warning header fields.) If all of the warning-
 values are deleted for this reason, the Warning header field MUST be
 deleted as well.

 The following warn-codes are defined by this specification, each with
 a recommended warn-text in English, and a description of its meaning.

7.6.1. 110 Response is Stale

 A cache SHOULD include this whenever the returned response is stale.

Fielding, et al. Expires January 17, 2013 [Page 31]

Internet-Draft HTTP/1.1, Part 6 July 2012

7.6.2. 111 Revalidation Failed

 A cache SHOULD include this when returning a stale response because
 an attempt to validate the response failed, due to an inability to
 reach the server.

7.6.3. 112 Disconnected Operation

 A cache SHOULD include this if it is intentionally disconnected from
 the rest of the network for a period of time.

7.6.4. 113 Heuristic Expiration

 A cache SHOULD include this if it heuristically chose a freshness
 lifetime greater than 24 hours and the response’s age is greater than
 24 hours.

7.6.5. 199 Miscellaneous Warning

 The warning text can include arbitrary information to be presented to
 a human user, or logged. A system receiving this warning MUST NOT
 take any automated action, besides presenting the warning to the
 user.

7.6.6. 214 Transformation Applied

 MUST be added by a proxy if it applies any transformation to the
 representation, such as changing the content-coding, media-type, or
 modifying the representation data, unless this Warning code already
 appears in the response.

7.6.7. 299 Miscellaneous Persistent Warning

 The warning text can include arbitrary information to be presented to
 a human user, or logged. A system receiving this warning MUST NOT
 take any automated action.

7.6.8. Warn Code Extensions

 The HTTP Warn Code Registry defines the name space for warn codes.

 A registration MUST include the following fields:

 o Warn Code (3 digits)

 o Short Description

Fielding, et al. Expires January 17, 2013 [Page 32]

Internet-Draft HTTP/1.1, Part 6 July 2012

 o Pointer to specification text

 Values to be added to this name space require IETF Review (see
 [RFC5226], Section 4.1).

 The registry itself is maintained at
 <http://www.iana.org/assignments/http-warn-codes>.

8. History Lists

 User agents often have history mechanisms, such as "Back" buttons and
 history lists, that can be used to redisplay a representation
 retrieved earlier in a session.

 The freshness model (Section 4.1) does not necessarily apply to
 history mechanisms. I.e., a history mechanism can display a previous
 representation even if it has expired.

 This does not prohibit the history mechanism from telling the user
 that a view might be stale, or from honoring cache directives (e.g.,
 Cache-Control: no-store).

9. IANA Considerations

9.1. Cache Directive Registry

 The registration procedure for HTTP Cache Directives is defined by
 Section 7.2.3 of this document.

 The HTTP Cache Directive Registry shall be created at
 <http://www.iana.org/assignments/http-cache-directives> and be
 populated with the registrations below:

Fielding, et al. Expires January 17, 2013 [Page 33]

Internet-Draft HTTP/1.1, Part 6 July 2012

 +------------------------+----------------------------------+
 | Cache Directive | Reference |
 +------------------------+----------------------------------+
max-age	Section 7.2.1.3, Section 7.2.2.7
max-stale	Section 7.2.1.4
min-fresh	Section 7.2.1.5
must-revalidate	Section 7.2.2.5
no-cache	Section 7.2.1.1, Section 7.2.2.3
no-store	Section 7.2.1.2, Section 7.2.2.4
no-transform	Section 7.2.1.6, Section 7.2.2.9
only-if-cached	Section 7.2.1.7
private	Section 7.2.2.2
proxy-revalidate	Section 7.2.2.6
public	Section 7.2.2.1
s-maxage	Section 7.2.2.8
stale-if-error	[RFC5861], Section 4
stale-while-revalidate	[RFC5861], Section 3
 +------------------------+----------------------------------+

9.2. Warn Code Registry

 The registration procedure for HTTP Warn Codes is defined by
 Section 7.6.8 of this document.

 The HTTP Warn Code Registry shall be created at
 <http://www.iana.org/assignments/http-cache-directives> and be
 populated with the registrations below:

 +-----------+----------------------------------+---------------+
 | Warn Code | Short Description | Reference |
 +-----------+----------------------------------+---------------+
110	Response is Stale	Section 7.6.1
111	Revalidation Failed	Section 7.6.2
112	Disconnected Operation	Section 7.6.3
113	Heuristic Expiration	Section 7.6.4
199	Miscellaneous Warning	Section 7.6.5
214	Transformation Applied	Section 7.6.6
299	Miscellaneous Persistent Warning	Section 7.6.7
 +-----------+----------------------------------+---------------+

9.3. Header Field Registration

 The Message Header Field Registry located at <http://www.iana.org/
 assignments/message-headers/message-header-index.html> shall be
 updated with the permanent registrations below (see [RFC3864]):

Fielding, et al. Expires January 17, 2013 [Page 34]

Internet-Draft HTTP/1.1, Part 6 July 2012

 +-------------------+----------+----------+-------------+
 | Header Field Name | Protocol | Status | Reference |
 +-------------------+----------+----------+-------------+
Age	http	standard	Section 7.1
Cache-Control	http	standard	Section 7.2
Expires	http	standard	Section 7.3
Pragma	http	standard	Section 7.4
Vary	http	standard	Section 7.5
Warning	http	standard	Section 7.6
 +-------------------+----------+----------+-------------+

 The change controller is: "IETF (iesg@ietf.org) - Internet
 Engineering Task Force".

10. Security Considerations

 Caches expose additional potential vulnerabilities, since the
 contents of the cache represent an attractive target for malicious
 exploitation. Because cache contents persist after an HTTP request
 is complete, an attack on the cache can reveal information long after
 a user believes that the information has been removed from the
 network. Therefore, cache contents need to be protected as sensitive
 information.

11. Acknowledgments

 See Section 9 of [Part1].

12. References

12.1. Normative References

 [Part1] Fielding, R., Ed., Lafon, Y., Ed., and J. Reschke, Ed.,
 "HTTP/1.1, part 1: Message Routing and Syntax"",
 draft-ietf-httpbis-p1-messaging-20 (work in progress),
 July 2012.

 [Part2] Fielding, R., Ed., Lafon, Y., Ed., and J. Reschke, Ed.,
 "HTTP/1.1, part 2: Semantics and Payloads",
 draft-ietf-httpbis-p2-semantics-20 (work in progress),
 July 2012.

 [Part4] Fielding, R., Ed., Lafon, Y., Ed., and J. Reschke, Ed.,
 "HTTP/1.1, part 4: Conditional Requests",
 draft-ietf-httpbis-p4-conditional-20 (work in progress),
 July 2012.

 [Part5] Fielding, R., Ed., Lafon, Y., Ed., and J. Reschke, Ed.,

Fielding, et al. Expires January 17, 2013 [Page 35]

Internet-Draft HTTP/1.1, Part 6 July 2012

 "HTTP/1.1, part 5: Range Requests",
 draft-ietf-httpbis-p5-range-20 (work in progress),
 July 2012.

 [Part7] Fielding, R., Ed., Lafon, Y., Ed., and J. Reschke, Ed.,
 "HTTP/1.1, part 7: Authentication",
 draft-ietf-httpbis-p7-auth-20 (work in progress),
 July 2012.

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119, March 1997.

 [RFC5234] Crocker, D., Ed. and P. Overell, "Augmented BNF for Syntax
 Specifications: ABNF", STD 68, RFC 5234, January 2008.

12.2. Informative References

 [RFC1305] Mills, D., "Network Time Protocol (Version 3)
 Specification, Implementation", RFC 1305, March 1992.

 [RFC2616] Fielding, R., Gettys, J., Mogul, J., Frystyk, H.,
 Masinter, L., Leach, P., and T. Berners-Lee, "Hypertext
 Transfer Protocol -- HTTP/1.1", RFC 2616, June 1999.

 [RFC3864] Klyne, G., Nottingham, M., and J. Mogul, "Registration
 Procedures for Message Header Fields", BCP 90, RFC 3864,
 September 2004.

 [RFC5226] Narten, T. and H. Alvestrand, "Guidelines for Writing an
 IANA Considerations Section in RFCs", BCP 26, RFC 5226,
 May 2008.

 [RFC5861] Nottingham, M., "HTTP Cache-Control Extensions for Stale
 Content", RFC 5861, April 2010.

Appendix A. Changes from RFC 2616

 Make the specified age calculation algorithm less conservative.
 (Section 4.1.3)

 Remove requirement to consider Content-Location in successful
 responses in order to determine the appropriate response to use.
 (Section 4.2)

 Clarify denial of service attack avoidance requirement. (Section 6)

 Change ABNF productions for header fields to only define the field
 value. (Section 7)

Fielding, et al. Expires January 17, 2013 [Page 36]

Internet-Draft HTTP/1.1, Part 6 July 2012

 Do not mention RFC 2047 encoding and multiple languages in Warning
 header fields anymore, as these aspects never were implemented.
 (Section 7.6)

 Introduce Cache Directive and Warn Code Registries. (Section 7.2.3
 and Section 7.6.8)

Appendix B. Imported ABNF

 The following core rules are included by reference, as defined in
 Appendix B.1 of [RFC5234]: ALPHA (letters), CR (carriage return),
 CRLF (CR LF), CTL (controls), DIGIT (decimal 0-9), DQUOTE (double
 quote), HEXDIG (hexadecimal 0-9/A-F/a-f), LF (line feed), OCTET (any
 8-bit sequence of data), SP (space), and VCHAR (any visible US-ASCII
 character).

 The rules below are defined in [Part1]:

 OWS = <OWS, defined in [Part1], Section 3.2.1>
 field-name = <field-name, defined in [Part1], Section 3.2>
 quoted-string = <quoted-string, defined in [Part1], Section 3.2.4>
 token = <token, defined in [Part1], Section 3.2.4>

 port = <port, defined in [Part1], Section 2.8>
 pseudonym = <pseudonym, defined in [Part1], Section 6.2>
 uri-host = <uri-host, defined in [Part1], Section 2.8>

 The rules below are defined in other parts:

 HTTP-date = <HTTP-date, defined in [Part2], Section 5.1>

Fielding, et al. Expires January 17, 2013 [Page 37]

Internet-Draft HTTP/1.1, Part 6 July 2012

Appendix C. Collected ABNF

 Age = delta-seconds

 Cache-Control = *("," OWS) cache-directive *(OWS "," [OWS
 cache-directive])

 Expires = HTTP-date

 HTTP-date = <HTTP-date, defined in [Part2], Section 5.1>

 OWS = <OWS, defined in [Part1], Section 3.2.1>

 Pragma = *("," OWS) pragma-directive *(OWS "," [OWS
 pragma-directive])

 Vary = "*" / (*("," OWS) field-name *(OWS "," [OWS field-name]
))

 Warning = *("," OWS) warning-value *(OWS "," [OWS warning-value]
)

 cache-directive = token ["=" (token / quoted-string)]

 delta-seconds = 1*DIGIT

 extension-pragma = token ["=" (token / quoted-string)]

 field-name = <field-name, defined in [Part1], Section 3.2>

 port = <port, defined in [Part1], Section 2.8>
 pragma-directive = "no-cache" / extension-pragma
 pseudonym = <pseudonym, defined in [Part1], Section 6.2>

 quoted-string = <quoted-string, defined in [Part1], Section 3.2.4>

 token = <token, defined in [Part1], Section 3.2.4>

 uri-host = <uri-host, defined in [Part1], Section 2.8>

 warn-agent = (uri-host [":" port]) / pseudonym
 warn-code = 3DIGIT
 warn-date = DQUOTE HTTP-date DQUOTE
 warn-text = quoted-string
 warning-value = warn-code SP warn-agent SP warn-text [SP warn-date
]

Fielding, et al. Expires January 17, 2013 [Page 38]

Internet-Draft HTTP/1.1, Part 6 July 2012

Appendix D. Change Log (to be removed by RFC Editor before publication)

 Changes up to the first Working Group Last Call draft are summarized
 in <http://trac.tools.ietf.org/html/
 draft-ietf-httpbis-p6-cache-19#appendix-C>.

D.1. Since draft-ietf-httpbis-p6-cache-19

 Closed issues:

 o <http://tools.ietf.org/wg/httpbis/trac/ticket/307>: "untangle
 Cache-Control ABNF"

 o <http://tools.ietf.org/wg/httpbis/trac/ticket/353>: "Multiple
 values in Cache-Control header fields"

 o <http://tools.ietf.org/wg/httpbis/trac/ticket/355>: "Case
 sensitivity of header fields in CC values"

 o <http://tools.ietf.org/wg/httpbis/trac/ticket/356>: "Spurious
 ’MAYs’"

 o <http://tools.ietf.org/wg/httpbis/trac/ticket/360>: "enhance
 considerations for new cache control directives"

 o <http://tools.ietf.org/wg/httpbis/trac/ticket/361>: "ABNF
 requirements for recipients"

 o <http://tools.ietf.org/wg/httpbis/trac/ticket/368>: "note
 introduction of new IANA registries as normative changes"

Index

 1
 110 Response is Stale (warn code) 31
 111 Revalidation Failed (warn code) 32
 112 Disconnected Operation (warn code) 32
 113 Heuristic Expiration (warn code) 32
 199 Miscellaneous Warning (warn code) 32

 2
 214 Transformation Applied (warn code) 32
 299 Miscellaneous Persistent Warning (warn code) 32

 A
 age 5
 Age header field 20

Fielding, et al. Expires January 17, 2013 [Page 39]

Internet-Draft HTTP/1.1, Part 6 July 2012

 C
 cache 4
 Cache Directives
 max-age 22, 25
 max-stale 22
 min-fresh 22
 must-revalidate 25
 no-cache 21, 24
 no-store 21, 25
 no-transform 23, 26
 only-if-cached 23
 private 23
 proxy-revalidate 25
 public 23
 s-maxage 26
 cache entry 7
 cache key 7
 Cache-Control header field 20
 cacheable 4

 E
 Expires header field 28
 explicit expiration time 5

 F
 first-hand 5
 fresh 5
 freshness lifetime 5

 G
 Grammar
 Age 20
 Cache-Control 21
 cache-directive 21
 delta-seconds 7
 Expires 28
 extension-pragma 29
 Pragma 29
 pragma-directive 29
 Vary 29
 warn-agent 30
 warn-code 30
 warn-date 30
 warn-text 30
 Warning 30
 warning-value 30

 H

Fielding, et al. Expires January 17, 2013 [Page 40]

Internet-Draft HTTP/1.1, Part 6 July 2012

 Header Fields
 Age 20
 Cache-Control 20
 Expires 28
 Pragma 28
 Vary 29
 Warning 30
 heuristic expiration time 5

 M
 max-age
 Cache Directive 22, 25
 max-stale
 Cache Directive 22
 min-fresh
 Cache Directive 22
 must-revalidate
 Cache Directive 25

 N
 no-cache
 Cache Directive 21, 24
 no-store
 Cache Directive 21, 25
 no-transform
 Cache Directive 23, 26

 O
 only-if-cached
 Cache Directive 23

 P
 Pragma header field 28
 private
 Cache Directive 23
 private cache 4
 proxy-revalidate
 Cache Directive 25
 public
 Cache Directive 23

 S
 s-maxage
 Cache Directive 26
 shared cache 4
 stale 5
 strong validator 6

Fielding, et al. Expires January 17, 2013 [Page 41]

Internet-Draft HTTP/1.1, Part 6 July 2012

 V
 validator 5
 strong 6
 Vary header field 29

 W
 Warn Codes
 110 Response is Stale 31
 111 Revalidation Failed 32
 112 Disconnected Operation 32
 113 Heuristic Expiration 32
 199 Miscellaneous Warning 32
 214 Transformation Applied 32
 299 Miscellaneous Persistent Warning 32
 Warning header field 30

Authors’ Addresses

 Roy T. Fielding (editor)
 Adobe Systems Incorporated
 345 Park Ave
 San Jose, CA 95110
 USA

 EMail: fielding@gbiv.com
 URI: http://roy.gbiv.com/

 Yves Lafon (editor)
 World Wide Web Consortium
 W3C / ERCIM
 2004, rte des Lucioles
 Sophia-Antipolis, AM 06902
 France

 EMail: ylafon@w3.org
 URI: http://www.raubacapeu.net/people/yves/

 Mark Nottingham (editor)
 Rackspace

 EMail: mnot@mnot.net
 URI: http://www.mnot.net/

Fielding, et al. Expires January 17, 2013 [Page 42]

Internet-Draft HTTP/1.1, Part 6 July 2012

 Julian F. Reschke (editor)
 greenbytes GmbH
 Hafenweg 16
 Muenster, NW 48155
 Germany

 EMail: julian.reschke@greenbytes.de
 URI: http://greenbytes.de/tech/webdav/

Fielding, et al. Expires January 17, 2013 [Page 43]

