HTTPbi s Wor ki ng G oup R Fielding, Ed.

I nternet-Draft Adobe
bsol etes: 2616 (if approved) Y. Lafon, Ed.
I ntended status: Standards Track WBC
Expires: January 17, 2013 M Nottingham Ed.

Rackspace

J. Reschke, Ed.
greenbyt es
July 16, 2012

HTTP/ 1.1, part 6: Caching
draft-ietf-httpbis-p6-cache-20

Abstract

The Hypertext Transfer Protocol (HTTP) is an application-Ieve
protocol for distributed, collaborative, hypertext information
systens. This docunent defines requirenments on HTTP caches and the
associ ated header fields that control cache behavior or indicate
cacheabl e response nessages.

Editorial Note (To be renpved by RFC Editor)

Di scussion of this draft takes place on the HTTPBI S worki ng group
mailing list (ietf-http-wyg@B3.org), which is archived at
<http://lists.w3.org/Archives/Public/ietf-http-wg/>.

The current issues list is at
<http://tools.ietf.org/wy/httpbis/trac/report/3> and rel ated
docunents (including fancy diffs) can be found at
<http://tools.ietf.org/wy/httpbis/>.

The changes in this draft are sunmarized in Appendix D. 1.
Status of This Meno

This Internet-Draft is submitted in full conformance with the
provi sions of BCP 78 and BCP 79.

Internet-Drafts are working docunments of the Internet Engineering
Task Force (IETF). Note that other groups may also distribute
wor ki ng docunments as Internet-Drafts. The list of current Internet-
Drafts is at http://datatracker.ietf.org/drafts/current/.

Internet-Drafts are draft docunents valid for a maxi num of six nonths

and nay be updated, replaced, or obsol eted by other docunents at any
time. It is inappropriate to use Internet-Drafts as reference

Fielding, et al. Expi res January 17, 2013 [Page 1]

Internet-Draft HTTP/ 1.1, Part 6 July 2012

material or to cite themother than as "work in progress.”
This Internet-Draft will expire on January 17, 2013.
Copyright Notice

Copyright (c) 2012 | ETF Trust and the persons identified as the
docunent authors. Al rights reserved.

This docunent is subject to BCP 78 and the | ETF Trust’s Lega
Provisions Relating to | ETF Docunents
(http://trustee.ietf.org/license-info) in effect on the date of
publication of this docunent. Please review these docunents
carefully, as they describe your rights and restrictions with respect
to this docunment. Code Conponents extracted fromthis docunment nust
include Sinplified BSD License text as described in Section 4.e of
the Trust Legal Provisions and are provided without warranty as
described in the Sinplified BSD License.

Thi s docunment may contain material from | ETF Docunents or |ETF
Contri butions published or made publicly avail abl e before Novenber
10, 2008. The person(s) controlling the copyright in sone of this
mat erial may not have granted the I ETF Trust the right to all ow

nodi fications of such material outside the | ETF Standards Process.
Wt hout obtaining an adequate |icense fromthe person(s) controlling
the copyright in such materials, this docunent may not be nodified
outside the | ETF Standards Process, and derivative works of it may
not be created outside the | ETF Standards Process, except to format
it for publication as an RFC or to translate it into |anguages other
t han Engli sh.

Tabl e of Contents

1. Introduction . 4
1.1. Purpose 4
1.2. Ternminol ogy e e 4
1.3. Confornance and Error Handl i ng . 6
1.4. Syntax Notation e 7

1.4.1. Delta Seconds . 7

2. Overview of Cache Qperation 7

3. Storing Responses in Caches 8
3.1. Storing Inconpl ete Responses . . 9
3.2. Storing Responses to Authentlcated Requests9

4. Constructing Responses fromCaches 10
4.1 Freshness Mddel . . . P I

4.1.1 Cal cul ati ng Freshness L|fet|ne e 4
4.1.2. Calculating Heuristic Freshness 12
4.1.3 Calculating Age13

Fielding, et al. Expi res January 17, 2013 [Page 2]

Internet-Draft HTTP/ 1.1, Part 6

Noo

NN
INNNNNNNNOORWNNNNE

9.

9.
9.
9.

10.
11.
12.

NANNN

.1.4. Serving Stale Responses
Val i dati on Mbdel

4
2. .o .
4.2.1. Freshening Responses Wi t h 304 Not lvbd| f| ed .

Usi ng Negoti at ed Responses .

4 Conbi ning Partial Content

Updating Caches with HEAD Responses
Request Methods that Invalidate

Header Field Definitions . .

Age . .

Cache- ControI G
.1. Request Cache- Control Di rectives .
.2. Response Cache-Control Directives
.3. Cache Control Extensions .

NDNDN

6.1 110 Response is Stale .
6.2 111 Revalidation Failed
6.3 112 Di sconnected Operation .
6.4. 113 Heuristic Expiration .
6.5. 199 M scel | aneous Vr ni ng
6.6 214 Transformation Appl ied . .
6.7 299 M scel | aneous Persistent Varni ng .
6.8. Warn Code Extensions .
i story Lists .
NA Consi der ati ons .

Cache Directive Regi stry .

Warn Code Registry . .

Header Field Registrati on
Security Considerations
Acknow edgrent s
Ref er ences .

b

wh ke

12.1. Normative Ref erences .

12.2. Informative References . . .
Appendi x A, Changes from RFC 2616 .
Appendi x B. I nported ABNF .

Appendi x C. Col | ected ABNF

Appendi x D.

publication)

D.1. Since draft-ietf- htipbls p6 cache 19

| ndex

Fielding, et al. Expi res January 17, 2013

Change Log (to be rem)ved by RFC Edltor bef ore.

July 2012

15
16
16
17
18
19
19
20
20
20
21
23
26
28
28
29
30
31
32
32
32
32
32
32
32
33
33
33
34
34
35
35
35
35
36
36
37
38

39

39
39

[Page 3]

Internet-Draft HTTP/ 1.1, Part 6 July 2012

1.

1.

1.

I nt roducti on

HTTP is typically used for distributed information systens, where
performance can be inproved by the use of response caches. This
docunent defines aspects of HITP/1.1 related to caching and reusing
response messages.

1. Purpose

An HTTP cache is a local store of response nessages and t he subsystem
that controls its nessage storage, retrieval, and deletion. A cache
stores cacheabl e responses in order to reduce the response tine and
net wor k bandwi dt h consunpti on on future, equival ent requests. Any
client or server MAY enpl oy a cache, though a cache cannot be used by
a server that is acting as a tunnel

The goal of caching in HTTP/1.1 is to significantly inprove
performance by reusing a prior response nessage to satisfy a current
request. A stored response is considered "fresh", as defined in
Section 4.1, if the response can be reused w thout "validation"
(checking with the origin server to see if the cached response
remains valid for this request). A fresh cache response can
therefore reduce both | atency and network transfers each tine it is
reused. Wien a cached response is not fresh, it nmight still be
reusable if it can be freshened by validation (Section 4.2) or if the
origin is unavail abl e.

2. Term nol ogy

This specification uses a nunber of terns to refer to the roles
pl ayed by participants in, and objects of, HITP cachi ng.

cache
A conformant inplenmentation of a HTTP cache. Note that this
inmplies an HTTP/ 1.1 cache; this specification does not define
conformance for HTTP/ 1.0 caches.

shared cache

A cache that stores responses to be reused by nore than one user
usual Iy (but not always) deployed as part of an internediary.

private cache

A cache that is dedicated to a single user

Fielding, et al. Expi res January 17, 2013 [Page 4]

Internet-Draft HTTP/ 1.1, Part 6 July 2012

cacheabl e
A response is cacheable if a cache is allowed to store a copy of
the response nessage for use in answering subsequent requests.
Even when a response is cacheable, there m ght be additiona
constraints on whether a cache can use the stored copy to satisfy
a particul ar request.

explicit expiration tine

The tine at which the origin server intends that a representation
no |l onger be returned by a cache without further validation

heuristic expiration tine

An expiration tine assigned by a cache when no explicit expiration
time is avail able.

age

The age of a response is the tinme since it was sent by, or
successfully validated with, the origin server

first-hand

A response is first-hand if the freshness nodel is not in use;
i.e., its age is O.

freshness lifetinme

The length of tine between the generation of a response and its
expiration tinme.

fresh

A response is fresh if its age has not yet exceeded its freshness
lifetine.

stal e

A response is stale if its age has passed its freshness lifetine
(either explicit or heuristic).

val i dat or
A protocol elenent (e.g., an entity-tag or a Last-Mdified tine)

that is used to find out whether a stored response is an
equi val ent copy of a representation. See Section 2.1 of [Part4].

Fielding, et al. Expi res January 17, 2013 [Page 5]

Internet-Draft HTTP/ 1.1, Part 6 July 2012

1.

3.

strong val i dator

A validator that is defined by the origin server such that its
current value will change if the representation body changes;
i.e., an entity-tag that is not narked as weak (Section 2.3 of
[Part4]) or, if no entity-tag is provided, a Last-Modified val ue
that is strong in the sense defined by Section 2.2.2 of [Part4].

Conf ormance and Error Handling

The key words "MJST", "MJST NOT", "REQUI RED', "SHALL", "SHALL NOT",
"SHOULD', "SHOULD NOT", "RECOMMENDED', "MAY", and "OPTIONAL" in this
docunment are to be interpreted as described in [RFC2119].

This specification targets conformance criteria according to the role
of a participant in HITP comruni cation. Hence, HITP requirenents are
pl aced on senders, recipients, clients, servers, user agents,
intermedi aries, origin servers, proxies, gateways, or caches,
dependi ng on what behavi or is being constrained by the requirenent.
See Section 2 of [Partl] for definitions of these terns.

The verb "generate" is used instead of "send" where a requirenent
differentiates between creating a protocol elenment and nerely
forwarding a received el enent downstream

An inmplenentation is considered conformant if it conplies with all of
the requirenents associated with the roles it partakes in HTTP. Note
that SHOULD-1evel requirenents are rel evant here, unless one of the
docunent ed exceptions is applicable.

Thi s docunent al so uses ABNF to define valid protocol elenents
(Section 1.4). In addition to the prose requirenments placed upon
them senders MJST NOT generate protocol elenents that do not match
the grammar defined by the ABNF rules for those protocol elenents
that are applicable to the sender’s role. |If a received protoco

el ement is processed, the recipient MIST be able to parse any val ue
that would match the ABNF rules for that protocol elenent, excluding
only those rules not applicable to the recipient’s role.

Unl ess noted otherw se, a recipient MAY attenpt to recover a usable
protocol elenent froman invalid construct. HITP does not define
specific error handling nmechani snms except when they have a direct

i mpact on security, since different applications of the protoco
require different error handling strategies. For exanple, a Wb
browser mght wish to transparently recover froma response where the
Location header field doesn't parse according to the ABNF, whereas a
systens control client mght consider any formof error recovery to
be danger ous.

Fielding, et al. Expi res January 17, 2013 [Page 6]

Internet-Draft HTTP/ 1.1, Part 6 July 2012

1.4. Syntax Notation

This specification uses the Augnmented Backus- Naur Form (ABNF)
notation of [RFC5234] with the list rule extension defined in Section
1.2 of [Partl]. Appendix B describes rules inported from other
docunents. Appendi x C shows the collected ABNF with the list rule
expanded.

1.4.1. Del ta Seconds

The delta-seconds rul e specifies a non-negative integer, representing
time in seconds.

delta-seconds = 1*DIG T

If an inplenmentation receives a delta-seconds value |arger than the

| argest positive integer it can represent, or if any of its
subsequent cal cul ations overflows, it MJST consider the value to be
2147483648 (2731). Recipients parsing a delta-seconds val ue MJST use
an arithnmetic type of at least 31 bits of range, and senders MJST NOT
send delta-seconds with a value greater than 2147483648.

2. Overview of Cache Qperation

Proper cache operation preserves the senmantics of HITP transfers
([Part2]) while elimnating the transfer of information already held
in the cache. Although caching is an entirely OPTIONAL feature of
HTTP, we assune that reusing the cached response is desirable and
that such reuse is the default behavi or when no requirenent or

| ocal | y-desired configuration prevents it. Therefore, HTTP cache
requirenents are focused on preventing a cache fromeither storing a
non-reusabl e response or reusing a stored response inappropriately.

Each cache entry consists of a cache key and one or nore HITP
responses corresponding to prior requests that used the sanme key.

The nmost conmon form of cache entry is a successful result of a
retrieval request: i.e., a 200 (OK) response containing a
representation of the resource identified by the request target.
However, it is also possible to cache negative results (e.g., 404
(Not Found), inconplete results (e.g., 206 (Partial Content)), and
responses to nmethods other than GET if the nmethod’s definition allows
such caching and defines sonething suitable for use as a cache key.

The default cache key consists of the request method and target URI
However, since HTTP caches in comon use today are typically linmted
to caching responses to GET, nmany inplenentations sinply decline
other nethods and use only the URI as the key.

Fielding, et al. Expi res January 17, 2013 [Page 7]

Internet-Draft HTTP/ 1.1, Part 6 July 2012

If a request target is subject to content negotiation, its cache
entry mght consist of multiple stored responses, each differentiated
by a secondary key for the values of the original request’s selecting
header fields (Section 4.3).

3. Storing Responses in Caches
A cache MUST NOT store a response to any request, unless:

0 The request nmethod is understood by the cache and defined as being
cacheabl e, and

o the response status code is understood by the cache, and

o the "no-store" cache directive (see Section 7.2) does not appear
in request or response header fields, and

o the "private" cache response directive (see Section 7.2.2.2) does
not appear in the response, if the cache is shared, and

0 the Authorization header field (see Section 4.1 of [Part7]) does
not appear in the request, if the cache is shared, unless the
response explicitly allows it (see Section 3.2), and

0 the response either

* contains an Expires header field (see Section 7.3), or

* contains a nax-age response cache directive (see
Section 7.2.2.7), or

* contains a s-naxage response cache directive and the cache is
shared, or

* contains a Cache Control Extension (see Section 7.2.3) that
allows it to be cached, or

* has a status code that can be served with heuristic freshness
(see Section 4.1.2).

Note that any of the requirenents |isted above can be overridden by a
cache-control extension; see Section 7.2.3.

In this context, a cache has "understood" a request nethod or a
response status code if it recognizes it and inplements any cache-
speci fic behavi or.

Note that, in nornmal operation, many caches will not store a response

Fielding, et al. Expi res January 17, 2013 [Page 8]

Internet-Draft HTTP/ 1.1, Part 6 July 2012

that has neither a cache validator nor an explicit expiration tine,
as such responses are not usually useful to store. However, caches
are not prohibited fromstoring such responses.

3.1. Storing Inconpl ete Responses

A response nessage is considered conplete when all of the octets

i ndi cated by the nessage franing ([Partl]) are received prior to the
connection being closed. |If the request is GET, the response status
is 200 (OK), and the entire response header bl ock has been received,
a cache MAY store an inconpl ete response nessage body if the cache
entry is recorded as inconplete. Likewise, a 206 (Partial Content)
response MAY be stored as if it were an inconplete 200 (OK) cache
entry. However, a cache MJST NOT store inconplete or partial content
responses if it does not support the Range and Content- Range header
fields or if it does not understand the range units used in those
fields.

A cache MAY conplete a stored inconplete response by making a
subsequent range request ([Part5]) and combining the successfu
response with the stored entry, as defined in Section 4.4. A cache
MUST NOT use an inconplete response to answer requests unless the
response has been nade conplete or the request is partial and
specifies a range that is wholly within the inconplete response. A
cache MUST NOT send a partial response to a client without explicitly
marking it as such using the 206 (Partial Content) status code.

3.2. Storing Responses to Authenticated Requests

A shared cache MJUST NOT use a cached response to a request with an
Aut hori zation header field (Section 4.1 of [Part7]) to satisfy any
subsequent request unless a cache directive that allows such
responses to be stored is present in the response.

In this specification, the follow ng Cache-Control response
directives (Section 7.2.2) have such an effect: nust-revalidate,
public, s-naxage.

Not e that cached responses that contain the "mnust-revalidate" and/or
"s-maxage" response directives are not allowed to be served stale
(Section 4.1.4) by shared caches. |In particular, a response with

ei ther "max-age=0, nust-revalidate" or "s-maxage=0" cannot be used to
satisfy a subsequent request without revalidating it on the origin
server.

Fielding, et al. Expi res January 17, 2013 [Page 9]

Internet-Draft HTTP/ 1.1, Part 6 July 2012

4.

Constructing Responses from Caches

For a presented request, a cache MJST NOT return a stored response,
unl ess:

0 The presented effective request URI (Section 5.5 of [Partl]) and
that of the stored response match, and

o the request method associated with the stored response allows it
to be used for the presented request, and

0 selecting header fields nominated by the stored response (if any)
mat ch those presented (see Section 4.3), and

o the presented request does not contain the no-cache pragma
(Section 7.4), nor the no-cache cache directive (Section 7.2.1),
unl ess the stored response is successfully validated
(Section 4.2), and

o0 the stored response does not contain the no-cache cache directive
(Section 7.2.2.3), unless it is successfully validated
(Section 4.2), and
0 the stored response is either
* fresh (see Section 4.1), or
* allowed to be served stale (see Section 4.1.4), or

* successfully validated (see Section 4.2).

Note that any of the requirenents |isted above can be overridden by a
cache-control extension; see Section 7.2.3.

When a stored response is used to satisfy a request without

val idation, a cache MJST include a single Age header field
(Section 7.1) in the response with a value equal to the stored
response’s current_age; see Section 4.1.3.

A cache MUST wite through requests with nethods that are unsafe
(Section 2.1.1 of [Part2]) to the origin server; i.e., a cache is not
all owed to generate a reply to such a request before having forwarded
the request and having received a correspondi ng response.

Al so, note that unsafe requests nmight invalidate already stored
responses; see Section 6.

When nore than one suitable response is stored, a cache MJST use the

Fielding, et al. Expi res January 17, 2013 [Page 10]

Internet-Draft HTTP/ 1.1, Part 6 July 2012

nmost recent response (as determ ned by the Date header field). It
can also forward a request with "Cache-Control: nax-age=0" or "Cache-
Control: no-cache" to disanbiguate which response to use

A cache that does not have a clock avail abl e MJST NOT use stored
responses without revalidating themon every use. A cache,
especially a shared cache, SHOULD use a nechani sm such as NTP

[RFC1305], to synchronize its clock with a reliable externa

st andar d.

4.1. Freshness Mbdel

When a response is "fresh"” in the cache, it can be used to satisfy
subsequent requests wi thout contacting the origin server, thereby
i mproving efficiency.

The prinmary nmechani smfor determning freshness is for an origin
server to provide an explicit expiration tine in the future, using
either the Expires header field (Section 7.3) or the nax-age response
cache directive (Section 7.2.2.7). Generally, origin servers wll
assign future explicit expiration times to responses in the belief
that the representation is not likely to change in a semantically
significant way before the expiration tine is reached.

If an origin server wishes to force a cache to validate every
request, it can assign an explicit expiration time in the past to
indicate that the response is already stale. Conpliant caches wll
normal |y validate the cached response before reusing it for
subsequent requests (see Section 4.1.4).

Since origin servers do not always provide explicit expiration tines,
a cache MAY assign a heuristic expiration time when an explicit time
is not specified, enploying algorithns that use other header field
val ues (such as the Last-Modified tine) to estimate a pl ausi bl e
expiration tinme. This specification does not provide specific

al gorithms, but does inpose worst-case constraints on their results.

The calculation to deternine if a response is fresh is:
response_is fresh = (freshness |lifetine > current_age)

The freshness lifetine is defined in Section 4.1.1; the current_age
is defined in Section 4.1.3.

Additionally, clients can influence freshness calculation -- either

constraining it relaxing it -- by using the nmax-age and m n-fresh
request cache directives. See Section 7.2.1 for details.

Fielding, et al. Expi res January 17, 2013 [Page 11]

Internet-Draft HTTP/ 1.1, Part 6 July 2012

Note that freshness applies only to cache operation; it cannot be
used to force a user agent to refresh its display or reload a
resource. See Section 8 for an explanation of the difference between
caches and hi story nechani sns.

4.1.1. Calculating Freshness Lifetine

A cache can calculate the freshness lifetine (denoted as
freshness_lifetine) of a response by using the first match of:

o |If the cache is shared and the s-nmaxage response cache directive
(Section 7.2.2.8) is present, use its value, or

o |If the max-age response cache directive (Section 7.2.2.7) is
present, use its value, or

o |If the Expires response header field (Section 7.3) is present, use
its value ninus the value of the Date response header field, or

0 Oherwise, no explicit expiration tinme is present in the response.
A heuristic freshness lifetinme mght be applicable; see
Section 4.1.2.

Note that this calculation is not vulnerable to clock skew, since al
of the information cones fromthe origin server

When there is nore than one value present for a given directive
(e.g., two Expires header fields, nultiple Cache-Control: nax-age
directives), it is considered invalid. Caches are encouraged to
consi der responses that have invalid freshness information to be
stal e.

4.1.2. Calculating Heuristic Freshness

If no explicit expiration tine is present in a stored response that
has a status code whose definition allows heuristic freshness to be
used (including the following in Section 4 of [Part2]: 200 (OK), 203
(Non- Authoritative Information), 206 (Partial Content), 300 (Multiple
Choi ces), 301 (Moved Permanently) and 410 (Gone)), a cache MAY
calculate a heuristic expiration tine. A cache MJST NOT use
heuristics to determine freshness for responses with status codes
that do not explicitly allowit.

When a heuristic is used to calculate freshness lifetine, a cache
SHOULD attach a Warning header field with a 113 warn-code to the
response if its current_age is nore than 24 hours and such a warning
is not already present.

Fielding, et al. Expi res January 17, 2013 [Page 12]

Internet-Draft HTTP/ 1.1, Part 6 July 2012

4.

Al'so, if the response has a Last-Mdified header field (Section 2.2
of [Partd]), caches are encouraged to use a heuristic expiration
value that is no nore than sone fraction of the interval since that
time. A typical setting of this fraction m ght be 10%

Note: Section 13.9 of [RFC2616] prohibited caches from cal cul ating
heuristic freshness for URIs with query conmponents (i.e., those
containing '?’). In practice, this has not been w dely

i npl emented. Therefore, servers are encouraged to send explicit
directives (e.g., Cache-Control: no-cache) if they wish to

precl ude cachi ng.

1.3. Calculating Age

HTTP/ 1.1 uses the Age header field to convey the estimted age of the
response nessage when obtained froma cache. The Age field value is
the cache’s estimate of the anobunt of tine since the response was
generated or validated by the origin server. 1In essence, the Age
value is the sumof the time that the response has been resident in
each of the caches along the path fromthe origin server, plus the
anount of time it has been in transit al ong network paths.

The following data is used for the age cal cul ation
age_val ue

The term "age_val ue" denotes the value of the Age header field
(Section 7.1), in a formappropriate for arithnetic operation; or
0, if not available.

dat e_val ue

HTTP/ 1.1 requires origin servers to send a Date header field, if
possi ble, with every response, giving the tine at which the
response was generated. The term "date_val ue" denotes the val ue
of the Date header field, in a formappropriate for arithmetic
operations. See Section 9.10 of [Part2] for the definition of the
Dat e header field, and for requirenents regardi ng responses

Wi thout it.

now

The term "now' neans "the current value of the clock at the host
performng the cal cul ation". A cache SHOULD use NTP ([RFC1305])
or some simlar protocol to synchronize its clocks to a globally
accurate time standard.

Fielding, et al. Expi res January 17, 2013 [Page 13]

Internet-Draft HTTP/ 1.1, Part 6 July 2012

request _tine

The current value of the clock at the host at the tinme the request
resulting in the stored response was nade.

response_tinme

The current value of the clock at the host at the tine the
response was received.

A response’s age can be calculated in two entirely independent ways:

1. the "apparent_age": response_tine ninus date_value, if the |oca
clock is reasonably well synchronized to the origin server’s

clock. If the result is negative, the result is replaced by
zero.
2. the "corrected age value", if all of the caches along the

response path inplement HTTP/1.1. A cache MJST interpret this
value relative to the tine the request was initiated, not the
time that the response was received.

apparent _age = max(0, response_tinme - date_ val ue);

response_del ay = response_tine - request_tine;
corrected_age_val ue = age_val ue + response_del ay;

These SHOULD be conbi ned as

corrected_initial _age = max(apparent _age, corrected_age_ val ue);
unl ess the cache is confident in the value of the Age header field
(e.g., because there are no HITP/ 1.0 hops in the Via header field),
in which case the corrected _age _val ue MAY be used as the
corrected_initial_age.
The current _age of a stored response can then be cal cul ated by addi ng
the amount of tine (in seconds) since the stored response was | ast
validated by the origin server to the corrected_initial_age

resident _time = now - response_tine;
current _age = corrected_initial _age + resident_tineg;

Additionally, to avoid common probl ens in date parsing:

Fielding, et al. Expi res January 17, 2013 [Page 14]

Internet-Draft HTTP/ 1.1, Part 6 July 2012

0o HITP/1.1 clients and caches SHOULD assune that an RFC- 850 date
whi ch appears to be nore than 50 years in the future is in fact in
the past (this hel ps solve the "year 2000" problem.

0 Although all date formats are specified to be case-sensitive,
reci pi ents SHOULD mat ch day, week and tinezone names case-
i nsensitively.

0 An HITP/1.1 inplenmentation MAY internally represent a parsed
Expires date as earlier than the proper value, but MJST NOT
internally represent a parsed Expires date as later than the
proper val ue.

0 Al expiration-related cal culations MIJST be done in GMI. The
| ocal time zone MJST NOT influence the cal culation or conparison
of an age or expiration tine.

o |f an HITP header field incorrectly carries a date value with a
time zone other than GMI, it MJST be converted into GMI using the
nmost conservative possi bl e conversion

4.1.4. Serving Stal e Responses

A "stale" response is one that either has explicit expiry information
or is allowed to have heuristic expiry cal culated, but is not fresh
according to the calculations in Section 4.1.

A cache MUST NOT return a stale response if it is prohibited by an
explicit in-protocol directive (e.g., by a "no-store" or "no-cache"
cache directive, a "must-revalidate" cache-response-directive, or an
appl i cabl e "s-naxage" or "proxy-revalidate" cache-response-directive;
see Section 7.2.2).

A cache MUST NOT return stale responses unless it is disconnected
(i.e., it cannot contact the origin server or otherwise find a
forward path) or doing so is explicitly allowed (e.g., by the max-
stal e request directive; see Section 7.2.1).

A cache SHOULD append a Warning header field with the 110 warn-code
(see Section 7.6) to stale responses. Likew se, a cache SHOULD add
the 112 warn-code to stale responses if the cache is di sconnected.

If a cache receives a first-hand response (either an entire response,
or a 304 (Not Mdified) response) that it would nornmally forward to
the requesting client, and the received response is no | onger fresh
the cache can forward it to the requesting client wi thout adding a
new Warni ng (but without renoving any existing Warni ng header
fields). A cache shouldn't attenpt to validate a response sinply

Fielding, et al. Expi res January 17, 2013 [Page 15]

Internet-Draft HTTP/ 1.1, Part 6 July 2012

4.

4.

because that response became stale in transit.

2. Validation Mdel

2

When a cache has one or nore stored responses for a requested URI

but cannot serve any of them (e.g., because they are not fresh, or
one cannot be sel ected; see Section 4.3), it can use the conditiona
request mechanism|[Part4] in the forwarded request to give the origin
server an opportunity to both select a valid stored response to be
used, and to update it. This process is known as "validating" or
"reval idating" the stored response.

When sending such a conditional request, a cache adds an If-Mdified-
Since header field whose value is that of the Last-Mdified header
field fromthe selected (see Section 4.3) stored response, if
avai | abl e.

Additionally, a cache can add an |f-None-Match header field whose
value is that of the ETag header field(s) fromall responses stored
for the requested URI, if present. However, if any of the stored
responses contains only partial content, the cache shouldn’t include
its entity-tag in the If-None-Match header field unless the request
is for a range that would be fully satisfied by that stored response.

Cache handling of a response to a conditional request is dependent
upon its status code:

0 A 304 (Not Mdified) response status code indicates that the
stored response can be updated and reused; see Section 4.2.1

o Afull response (i.e., one with a response body) indicates that
none of the stored responses nonminated in the conditional request
is suitable. Instead, the cache can use the full response to
satisfy the request and MAY repl ace the stored response(s).

0 However, if a cache receives a 5xx (Server Error) response while
attenpting to validate a response, it can either forward this
response to the requesting client, or act as if the server failed
to respond. In the latter case, it can return a previously stored
response (see Section 4.1.4).

1. Freshening Responses with 304 Not Modified

When a cache receives a 304 (Not Mdified) response and al ready has
one or nore stored 200 (OK) responses for the sane cache key, the
cache needs to identify which of the stored responses are updated by
this new response and then update the stored response(s) with the new
information provided in the 304 response.

Fielding, et al. Expi res January 17, 2013 [Page 16]

I nt

4. 3.

Fie

ernet-Draft HTTP/ 1.1, Part 6 July 2012

o |If the new response contains a strong validator, then that strong
validator identifies the selected representation. Al of the
stored responses with the same strong validator are selected. |If
none of the stored responses contain the sane strong validator
then this new response corresponds to a new sel ected
representati on and MJST NOT update the existing stored responses.

o |If the new response contains a weak validator and that validator
corresponds to one of the cache's stored responses, then the nost
recent of those matching stored responses is sel ected.

o |If the new response does not include any formof validator, there
is only one stored response, and that stored response also | acks a
validator, then that stored response is sel ected.

If a stored response is selected for update, the cache MJST:

0 delete any Warning header fields in the stored response wth warn-
code 1xx (see Section 7.6);

0 retain any Warning header fields in the stored response w th warn-
code 2xx; and,

0 wuse other header fields provided in the 304 (Not Modified)
response to replace all instances of the correspondi ng header
fields in the stored response.

Usi ng Negoti at ed Responses

When a cache receives a request that can be satisfied by a stored
response that has a Vary header field (Section 7.5), it MJST NOT use
that response unless all of the selecting header fields nom nated by
the Vary header field match in both the original request (i.e., that
associated with the stored response), and the presented request.

The selecting header fields fromtwo requests are defined to match if
and only if those in the first request can be transfornmed to those in
the second request by applying any of the foll ow ng:

0 adding or renpbving whitespace, where allowed in the header field s
synt ax

o conbining multiple header fields with the sane field nane (see
Section 3.2 of [Partl])

o normalizing both header field values in a way that is known to

have identical semantics, according to the header field's
specification (e.g., re-ordering field val ues when order is not

I ding, et al. Expi res January 17, 2013 [Page 17]

Internet-Draft HTTP/ 1.1, Part 6 July 2012

significant; case-nornalization, where values are defined to be
case-insensitive)

If (after any nornalization that m ght take place) a header field is
absent froma request, it can only match another request if it is
al so absent there.

A Vary header field-value of "*" always fails to match, and
subsequent requests to that resource can only be properly interpreted
by the origin server.

The stored response with matching sel ecting header fields is known as
the sel ected response.

If multiple selected responses are avail able, the nbst recent
response (as determned by the Date header field) is used; see
Section 4.

If no selected response is avail able, the cache can forward the
presented request to the origin server in a conditional request; see
Section 4. 2.

4.4. Conbining Partial Content

A response might transfer only a partial representation if the
connection closed prematurely or if the request used one or nore
Range specifiers ([Part5]). After several such transfers, a cache
m ght have received several ranges of the sanme representation. A
cache MAY conbine these ranges into a single stored response, and
reuse that response to satisfy later requests, if they all share the
same strong validator and the cache conplies with the client
requirenents in Section 4.2 of [Partbh].

When conbi ning the new response with one or nore stored responses, a
cache MJST:

0 delete any Warning header fields in the stored response wth warn-
code 1xx (see Section 7.6);

0 retain any Warning header fields in the stored response w th warn-
code 2xx; and,

0 use other header fields provided in the new response, aside from

Cont ent - Range, to replace all instances of the corresponding
header fields in the stored response.

Fielding, et al. Expi res January 17, 2013 [Page 18]

Internet-Draft HTTP/ 1.1, Part 6 July 2012

5.

Updati ng Caches with HEAD Responses

A response to the HEAD nethod is identical to what an equival ent
request made with a GET woul d have been, except it |lacks a body.

This property of HEAD responses is used to both invalidate and update
cached GET responses.

If one or nore stored GET responses can be selected (as per

Section 4.3) for a HEAD request, and the Content-Length, ETag or
Last - Mbdi fi ed val ue of a HEAD response differs fromthat in a

sel ected GET response, the cache MJST consider that sel ected response
to be stale.

If the Content-Length, ETag and Last-Mdified val ues of a HEAD
response (when present) are the same as that in a selected GET
response (as per Section 4.3), the cache SHOULD update the renaining
header fields in the stored response using the follow ng rules:

0 delete any Warning header fields in the stored response wth warn-
code 1xx (see Section 7.6);

0 retain any Warning header fields in the stored response w th warn-
code 2xx; and,

0 use other header fields provided in the response to replace all
i nstances of the correspondi ng header fields in the stored
response.

Request Methods that Invalidate

Because unsafe request methods (Section 2.1.1 of [Part2]) such as
PUT, POST or DELETE have the potential for changing state on the
origin server, intervening caches can use themto keep their contents
up-to-date.

A cache MUST invalidate the effective Request URI (Section 5.5 of
[Part1l]) as well as the URI(s) in the Location and Content-Location
response header fields (if present) when a non-error response to a
request with an unsafe nethod is received.

However, a cache MJUST NOT invalidate a URI froma Location or
Content - Locati on response header field if the host part of that UR
differs fromthe host part in the effective request URI (Section 5.5
of [Partl1]). This helps prevent denial of service attacks.

A cache MUST invalidate the effective request URI (Section 5.5 of
[Part1]) when it receives a non-error response to a request with a
met hod whose safety is unknown.

Fielding, et al. Expi res January 17, 2013 [Page 19]

Internet-Draft HTTP/ 1.1, Part 6 July 2012

Here, a "non-error response” is one with a 2xx (Successful) or 3xx
(Redirection) status code. "lnvalidate" neans that the cache wll
either renove all stored responses related to the effective request
URI, or will mark these as "invalid" and in need of a mandatory
val i dation before they can be returned in response to a subsequent
request.

Note that this does not guarantee that all appropriate responses are
i nval i dated. For exanple, the request that caused the change at the

origin server mght not have gone through the cache where a response
i s stored.

7. Header Field Definitions

This section defines the syntax and semantics of HITP/ 1.1 header
fields related to caching.

7.1. Age

The "Age" header field conveys the sender’s estimate of the amount of
time since the response was generated or successfully validated at
the origin server. Age values are calculated as specified in
Section 4.1.3.

Age = delta-seconds

Age field-values are non-negative integers, representing time in
seconds (see Section 1.4.1).

The presence of an Age header field in a response inplies that a
response is not first-hand. However, the converse is not true, since
HTTP/ 1. 0 caches night not inplenent the Age header field.

7.2. Cache-Contro

The "Cache-Control" header field is used to specify directives for
caches along the request/response chain. Such cache directives are
unidirectional in that the presence of a directive in a request does
not inply that the same directive is to be given in the response.

A cache MUST obey the requirenents of the Cache-Control directives
defined in this section. See Section 7.2.3 for information about how
Cache-Control directives defined el sewhere are handl ed

Note: HTTP/ 1.0 caches mi ght not inplenment Cache-Control and mi ght
only inplenment Pragma: no-cache (see Section 7.4).

A proxy, whether or not it inplenents a cache, MJST pass cache

Fielding, et al. Expi res January 17, 2013 [Page 20]

Internet-Draft HTTP/ 1.1, Part 6 July 2012

directives through in forwarded nessages, regardl ess of their
significance to that application, since the directives mght be
applicable to all recipients along the request/response chain. It is
not possible to target a directive to a specific cache.

Cache directives are identified by a token, to be conpared case-

i nsensitively, and have an optional argunment, that can use both token
and quoted-string syntax. For the directives defined bel ow t hat
define argunments, recipients ought to accept both forms, even if one
is docunented to be preferred. For any directive not defined by this
specification, recipients MJST accept both forns.

Cache- Cont r ol 1#cache-directive

cache-directive = token ["=" (token / quoted-string)]

For the cache directives defined below, no argunent is defined (nor
al | oned) otherw se stated otherw se.

7.2.1. Request Cache-Control Directives
7.2.1.1. no-cache

The "no-cache" request directive indicates that a cache MJUST NOT use
a stored response to satisfy the request w thout successful
validation on the origin server.

7.2.1.2. no-store

The "no-store" request directive indicates that a cache MJST NOT
store any part of either this request or any response to it. This
directive applies to both private and shared caches. "MJST NOT
store"” in this context means that the cache MJST NOT intentionally
store the information in non-volatile storage, and MJST nake a best -
effort attenpt to renove the information fromvolatile storage as
pronptly as possible after forwarding it.

This directive is NOT a reliable or sufficient nechani smfor ensuring
privacy. |In particular, malicious or conpronised caches night not
recogni ze or obey this directive, and comuni cati ons networks night
be vul nerabl e to eavesdroppi ng.

Note that if a request containing this directive is satisfied froma

cache, the no-store request directive does not apply to the already
stored response.

Fielding, et al. Expi res January 17, 2013 [Page 21]

Internet-Draft HTTP/ 1.1, Part 6 July 2012

7.2.1.3. nmax-age
Argunment synt ax:
del t a-seconds (see Section 1.4.1)

The "nmax-age" request directive indicates that the client is
unwilling to accept a response whose age is greater than the
speci fi ed nunber of seconds. Unless the max-stale request directive
is also present, the client is not willing to accept a stale
response.

Note: This directive uses the token form of the argunent syntax;
e.g., 'max-age=5", not 'max-age="5"'. Senders SHOULD NOT use the
quot ed-string form

7.2.1.4. max-stale
Argunment synt ax:

del ta-seconds (see Section 1.4.1)

The "max-stal e" request directive indicates that the client is
willing to accept a response that has exceeded its expiration tine.

If max-stale is assigned a value, then the client is willing to
accept a response that has exceeded its expiration tine by no nore

than the specified nunber of seconds. |If no value is assigned to
max-stale, then the client is willing to accept a stale response of
any age.

Note: This directive uses the token form of the argunent syntax;
e.g., 'max-stal e=10", not ’'max-stale="10""'. Senders SHOULD NOT use
the quoted-string form

7.2.1.5. min-fresh
Argunment synt ax:
del ta-seconds (see Section 1.4.1)
The "min-fresh" request directive indicates that the client is
willing to accept a response whose freshness lifetime is no |l ess than
its current age plus the specified time in seconds. That is, the
client wants a response that will still be fresh for at |east the

speci fi ed nunber of seconds.

Note: This directive uses the token form of the argunent syntax;
e.g., 'mn-fresh=20", not 'min-fresh="20"". Senders SHOULD NOT use

Fielding, et al. Expi res January 17, 2013 [Page 22]

Internet-Draft HTTP/ 1.1, Part 6 July 2012

t he quoted-string form
7.2.1.6. no-transform

The "no-transforni' request directive indicates that an internediary
(whether or not it inplements a cache) MJUST NOT change the Content-
Encodi ng, Content-Range or Content-Type request header fields, nor
the request representation

7.2.1.7. only-if-cached

The "only-if-cached" request directive indicates that the client only
wi shes to obtain a stored response. |If it receives this directive, a
cache SHOULD either respond using a stored response that is
consistent with the other constraints of the request, or respond with
a 504 (Gateway Tineout) status code. |If a group of caches is being
operated as a unified systemwi th good internal connectivity, a
menmber cache MAY forward such a request within that group of caches.

7.2.2. Response Cache-Control Directives

7.2.2.1. public

The "public" response directive indicates that a response whose
associ ated request contains an 'Authentication’ header MAY be stored
(see Section 3.2).

7.2.2.2. private

Argunent synt ax:
#fiel d- name

The "private" response directive indicates that the response nessage
is intended for a single user and MJUST NOT be stored by a shared
cache. A private cache MAY store the response.
If the private response directive specifies one or nore field-nanes,
this requirement is limted to the field-values associated with the
|isted response header fields. That is, a shared cache MJUST NOT
store the specified field-nanmes(s), whereas it MAY store the
remai nder of the response nessage.
The field-names given are not linited to the set of standard header
fields defined by this specification. Field nanes are case-
i nsensitive.

Note: This usage of the word "private" only controls where the

Fielding, et al. Expi res January 17, 2013 [Page 23]

Internet-Draft HTTP/ 1.1, Part 6 July 2012

response can be stored; it cannot ensure the privacy of the nmessage
content. Also, private response directives with field-names are
often handl ed by inplenentations as if an unqualified private
directive was received; i.e., the special handling for the qualified
formis not w dely inplenented.

Note: This directive uses the quoted-string formof the argunent
syntax. Senders SHOULD NOT use the token form (even if quoting
appears not to be needed for single-entry lists).

7.2.2.3. no-cache
Argunment synt ax:
#fi el d- nane

The "no-cache" response directive indicates that the response MJST
NOT be used to satisfy a subsequent request w thout successfu
validation on the origin server. This allows an origin server to
prevent a cache fromusing it to satisfy a request w thout contacting
it, even by caches that have been configured to return stale
responses.

I f the no-cache response directive specifies one or nore field-nanes,
then a cache MAY use the response to satisfy a subsequent request,
subject to any other restrictions on caching. However, any header
fields in the response that have the field-nane(s) Iisted MIST NOT be
sent in the response to a subsequent request w thout successfu
revalidation with the origin server. This allows an origin server to
prevent the re-use of certain header fields in a response, while
still allow ng caching of the rest of the response.

The field-names given are not linted to the set of standard header
fields defined by this specification. Field nanes are case-
i nsensitive.

Note: Many HTTP/ 1.0 caches will not recognize or obey this directive.
Al so, no-cache response directives with fiel d-names are often handl ed
by inplementations as if an unqualified no-cache directive was
received; i.e., the special handling for the qualified formis not

wi del y i npl enent ed.

Note: This directive uses the quoted-string formof the argunent

syntax. Senders SHOULD NOT use the token form (even if quoting
appears not to be needed for single-entry lists).

Fielding, et al. Expi res January 17, 2013 [Page 24]

Internet-Draft HTTP/ 1.1, Part 6 July 2012

7.2.2.4. no-store

The "no-store"” response directive indicates that a cache MJST NOT
store any part of either the imredi ate request or response. This
directive applies to both private and shared caches. "MJST NOT
store" in this context nmeans that the cache MJUST NOT intentionally
store the information in non-volatile storage, and MJST nake a best -
effort attenpt to renove the information fromvolatil e storage as
pronptly as possible after forwarding it.

This directive is NOT a reliable or sufficient nechanismfor ensuring
privacy. In particular, malicious or conmprom sed caches mni ght not
recogni ze or obey this directive, and conmuni cati ons networks mi ght
be vul nerabl e to eavesdroppi ng.

7.2.2.5. nmnust-revalidate

The "nust-revalidate" response directive indicates that once it has
becone stale, a cache MJST NOT use the response to satisfy subsequent
requests without successful validation on the origin server.

The nmust-revalidate directive is necessary to support reliable
operation for certain protocol features. |In all circunstances a
cache MUST obey the nust-revalidate directive; in particular, if a
cache cannot reach the origin server for any reason, it MJST generate
a 504 (Gateway Tineout) response.

The nust-revalidate directive ought to be used by servers if and only
if failure to validate a request on the representation could result
in incorrect operation, such as a silently unexecuted financi al
transacti on.

7.2.2.6. proxy-revalidate
The "proxy-revalidate" response directive has the sanme neaning as the
must -reval i date response directive, except that it does not apply to
private caches

7.2.2.7. max-age
Argunment synt ax:

del ta- seconds (see Section 1.4.1)

The "max-age" response directive indicates that the response is to be

considered stale after its age is greater than the specified nunber
of seconds.

Fielding, et al. Expi res January 17, 2013 [Page 25]

Internet-Draft HTTP/ 1.1, Part 6 July 2012

Note: This directive uses the token form of the argunent syntax;
e.g., 'max-age=5", not 'max-age="5"". Senders SHOULD NOT use the
quot ed-string form

7.2.2.8. s-nmaxage
Argunment synt ax:
del ta-seconds (see Section 1.4.1)

The "s-nmaxage" response directive indicates that, in shared caches,

t he maxi mum age specified by this directive overrides the maxi num age
specified by either the max-age directive or the Expires header
field. The s-maxage directive also inplies the semantics of the
proxy-reval i date response directive.

Note: This directive uses the token form of the argunent syntax;
e.g., 's-maxage=10", not ’s-maxage="10"'. Senders SHOULD NOT use the
quot ed-string form

7.2.2.9. no-transform

The "no-transforni' response directive indicates that an internediary
(regardl ess of whether it inplenents a cache) MJUST NOT change the
Cont ent - Encodi ng, Cont ent - Range or Content-Type response header
fields, nor the response representation.

7.2.3. Cache Control Extensions

The Cache-Control header field can be extended through the use of one
or nore cache-extension tokens, each with an optional val ue.

I nf ormati onal extensions (those that do not require a change in cache
behavi or) can be added w thout changing the semantics of other
directives. Behavioral extensions are designed to work by acting as
nodi fiers to the existing base of cache directives. Both the new
directive and the standard directive are supplied, such that
applications that do not understand the new directive will default to
t he behavi or specified by the standard directive, and those that
understand the new directive will recognize it as nodifying the
requirenents associated with the standard directive. In this way,
extensions to the cache-control directives can be nade wi t hout

requi ring changes to the base protocol

Thi s ext ensi on mechani sm depends on an HTTP cache obeying all of the
cache-control directives defined for its native HITP-version, obeying
certain extensions, and ignoring all directives that it does not
under st and.

Fielding, et al. Expi res January 17, 2013 [Page 26]

Internet-Draft HTTP/ 1.1, Part 6 July 2012

For exanpl e, consider a hypothetical new response directive called
"comunity" that acts as a nodifier to the private directive. W
define this new directive to nmean that, in addition to any private
cache, any cache that is shared only by nenbers of the community
naned within its value is allowed to cache the response. An origin
server wishing to allow the UCI comunity to use an otherw se private
response in their shared cache(s) could do so by including

Cache-Control : private, conmunity="UCl"
A cache seeing this header field will act correctly even if the cache
does not understand the comunity cache-extension, since it will also
see and understand the private directive and thus default to the safe
behavi or.
A cache MUST ignore unrecogni zed cache directives; it is assuned that
any cache directive likely to be unrecogni zed by an HTTP/ 1.1 cache
will be conmbined with standard directives (or the response’'s default
cacheability) such that the cache behavior will remain mininmally
correct even if the cache does not understand the extension(s).
New ext ensi on directives ought to consider defining:
0o Wat it nmeans for a directive to be specified nmultiple tines,

0 When the directive does not take an argunent, what it nmeans when
an argunent is present,

0 Wien the directive requires an argunent, what it neans when it is
n ssi ng.

The HTTP Cache Directive Registry defines the name space for the
cache directives.

A registration MJST include the follow ng fields:
0 Cache Directive Nane
o0 Pointer to specification text

Val ues to be added to this nane space require | ETF Review (see
[RFC5226], Section 4.1).

The registry itself is maintained at
<http://ww.iana. org/assi gnments/ http-cache-directives>

Fielding, et al. Expi res January 17, 2013 [Page 27]

Internet-Draft HTTP/ 1.1, Part 6 July 2012

7.3. Expires

The "Expires" header field gives the date/time after which the
response is considered stale. See Section 4.1 for further discussion
of the freshness nodel.

The presence of an Expires field does not inply that the origina
resource will change or cease to exist at, before, or after that
time.

The field-value is an absolute date and tine as defined by HTTP-date
in Section 5.1 of [Part2]; a sender MJST use the rfcll23-date fornmat.

Expires = HITP-date
For exanpl e
Expires: Thu, 01 Dec 1994 16:00: 00 GV

A cache MUST treat other invalid date formats, especially including
the value "0", as in the past (i.e., "already expired").

Note: If a response includes a Cache-Control field with the nmax-
age directive (see Section 7.2.2.7), that directive overrides the
Expires field. Likew se, the s-maxage directive (Section 7.2.2.8)
overrides the Expires header fieldin shared caches.

Hi storically, HTTP required the Expires field-value to be no nore
than a year in the future. Wile longer freshness lifetinmes are no
| onger prohibited, extrenely |arge values have been denonstrated to
cause problens (e.g., clock overflows due to use of 32-bit integers
for time values), and many caches will evict a response far sooner
than that. Therefore, senders ought not produce them

An origin server without a clock MJST NOT assign Expires values to a
response unl ess these values were associated with the resource by a
systemor user with a reliable clock. It MAY assign an Expires val ue
that is known, at or before server configuration time, to be in the
past (this allows "pre-expiration” of responses w thout storing
separate Expires values for each resource).

7.4. Pragma

The "Pragma" header field allows backwards conpatibility with

HTTP/ 1.0 caches, so that clients can specify a "no-cache" request
that they will understand (as Cache-Control was not defined unti
HTTP/ 1.1). \Wen the Cache-Control header field is also present and
understood in a request, Pragma is ignored.

Fielding, et al. Expi res January 17, 2013 [Page 28]

Internet-Draft HTTP/ 1.1, Part 6 July 2012

In HTTP/ 1.0, Pragma was defined as an extensible field for
i mpl ement ati on-specified directives for recipients. This
speci fication deprecates such extensions to inprove interoperability.

Pragma
pragma-directive
ext ensi on- pragna

1l#pragma-directive
"no-cache" / extension-pragm
token ["=" (token / quoted-string)]

When the Cache-Control header field is not present in a request, the
no-cache request pragma-directive MJST have the sane effect on caches
as if "Cache-Control: no-cache" were present (see Section 7.2.1).

When sendi ng a no-cache request, a client ought to include both the
pragma and cache-control directives, unless Cache-Control: no-cache
is purposefully omtted to target other Cache-Control response
directives at HTTP/ 1.1 caches. For exanpl e:

GET /| HTTP/ 1.1

Host: www. exanpl e. com
Cache-Control : nax-age=30
Pragma: no-cache

will constrain HTTP/ 1.1 caches to serve a response no ol der than 30
seconds, while precluding inplenmentations that do not understand
Cache-Control from serving a cached response.

Not e: Because the neani ng of "Pragnma: no-cache" in responses is
not specified, it does not provide a reliable replacenent for
"Cache-Control: no-cache" in them

7.5. Vary

The "Vary" header field conveys the set of header fields that were
used to select the representation

Caches use this information, in part, to determ ne whether a stored
response can be used to satisfy a given request; see Section 4.3.

In uncacheabl e or stale responses, the Vary field value advises the
user agent about the criteria that were used to select the
representation.

Vary = "*" [1#fi el d- name

The set of header fields naned by the Vary field value is known as
the sel ecting header fields.

Fielding, et al. Expi res January 17, 2013 [Page 29]

Internet-Draft HTTP/ 1.1, Part 6 July 2012

A server SHOULD include a Vary header field with any cacheabl e
response that is subject to server-driven negotiation. Doing so

all ows a cache to properly interpret future requests on that resource
and inforns the user agent about the presence of negotiation on that
resource. A server MAY include a Vary header field with a non-
cacheabl e response that is subject to server-driven negotiation

since this nmight provide the user agent with useful information about
t he di nensi ons over which the response varies at the tine of the
response.

A Vary field value of "*" signals that unspecified paraneters not
limted to the header fields (e.g., the network address of the
client), play a role in the selection of the response representation
therefore, a cache cannot determ ne whether this response is
appropriate. A proxy MJST NOT generate the "*" val ue.

The field-nanmes given are not linited to the set of standard header
fields defined by this specification. Field names are case-
i nsensitive.

7.6. \Warning

The "Warni ng" header field is used to carry additional information
about the status or transformati on of a nessage that m ght not be
reflected in the nessage. This information is typically used to warn
about possible incorrectness introduced by caching operations or
transformations applied to the payl oad of the message.

War ni ngs can be used for other purposes, both cache-rel ated and
otherwi se. The use of a warning, rather than an error status code
di stingui shes these responses fromtrue failures

War ni ng header fields can in general be applied to any nessage,
however sone warn-codes are specific to caches and can only be
applied to response nessages.

War ni ng 1#war ni ng- val ue

war ni ng- val ue war n- code SP war n-agent SP warn-text

[SP war n- dat €]

3DA T
(uri-host | port 1) / pseudonym

; the nanme or pseudonym of the server adding

; the Warning header field, for use in debugging
quot ed-string

DQUOTE HTTP- dat e DQUOTE

war n- code
war n- agent

war n-t ext
war n- dat e

Fielding, et al. Expi res January 17, 2013 [Page 30]

Internet-Draft HTTP/ 1.1, Part 6 July 2012

Mul tipl e warnings can be attached to a response (either by the origin
server or by a cache), including nmultiple warnings with the same code
nunber, only differing in warn-text.

When this occurs, the user agent SHOULD i nformthe user of as many of
them as possible, in the order that they appear in the response.

Systens that generate nultiple Warning header fields are encouraged
to order themw th this user agent behavior in mnd. New Warning
header fields are added after any existing Warning header fields.

Warni ngs are assigned three digit warn-codes. The first digit
i ndi cates whether the Warning is required to be deleted froma stored
response after validation

0 1xx Warni ngs describe the freshness or validation status of the
response, and so MJUST be del eted by a cache after validation
They can only be generated by a cache when validating a cached
entry, and MJUST NOT be generated in any other situation

0 2xx Warnings describe sone aspect of the representation that is
not rectified by a validation (for exanple, a | ossy conpression of
the representation) and MJUST NOT be del eted by a cache after
validation, unless a full response is returned, in which case they
MUST be.

If an inplenmentation sends a nessage with one or nore Warni ng header
fields to a receiver whose version is HITP/1.0 or |ower, then the
sender MJST include in each warning-value a warn-date that natches
the Date header field in the nessage.

If a systemreceives a nessage with a warning-value that includes a
warn-date, and that warn-date is different fromthe Date value in the
response, then that warning-val ue MIST be deleted fromthe nessage
before storing, forwarding, or using it. (preventing the consequences
of naive caching of Warning header fields.) |If all of the warning-
val ues are deleted for this reason, the Warni ng header field MJST be
del eted as well.

The follow ng warn-codes are defined by this specification, each with
a recomended warn-text in English, and a description of its neaning.

7.6.1. 110 Response is Stale

A cache SHOULD include this whenever the returned response is stale.

Fielding, et al. Expi res January 17, 2013 [Page 31]

Internet-Draft HTTP/ 1.1, Part 6 July 2012

7.6.2. 111 Revalidation Failed
A cache SHOULD include this when returning a stale response because
an attenpt to validate the response failed, due to an inability to
reach the server.

7.6.3. 112 Di sconnected Operation

A cache SHOULD include this if it is intentionally disconnected from
the rest of the network for a period of tine.

7.6.4. 113 Heuristic Expiration
A cache SHOULD include this if it heuristically chose a freshness
lifetime greater than 24 hours and the response’s age is greater than
24 hours.

7.6.5. 199 M scel | aneous Warni ng
The warning text can include arbitrary information to be presented to
a human user, or logged. A systemreceiving this warning MJST NOT
take any automated action, besides presenting the warning to the
user.

7.6.6. 214 Transformation Applied
MUST be added by a proxy if it applies any transformation to the
representation, such as changing the content-codi ng, nedi a-type, or
nmodi fying the representation data, unless this Warning code al ready
appears in the response.

7.6.7. 299 M scel l aneous Persistent Warning
The warning text can include arbitrary information to be presented to
a hunman user, or logged. A systemreceiving this warning MJST NOT
take any automated action.

7.6.8. Warn Code Extensions
The HTTP Warn Code Registry defines the nane space for warn codes
A registration MIST include the follow ng fields:
0 Warn Code (3 digits)

0 Short Description

Fielding, et al. Expi res January 17, 2013 [Page 32]

Internet-Draft HTTP/ 1.1, Part 6 July 2012

9.

9.

0 Pointer to specification text

Val ues to be added to this nane space require | ETF Review (see
[RFC5226], Section 4.1).

The registry itself is maintained at
<http://wmv. i ana. or g/ assi gnnent s/ htt p- war n- codes>

Hi story Lists

User agents often have history nechani sns, such as "Back" buttons and
history lists, that can be used to redisplay a representation
retrieved earlier in a session

The freshness nodel (Section 4.1) does not necessarily apply to
history mechanisns. 1|.e., a history nechani smcan display a previous
representation even if it has expired.

This does not prohibit the history mechanismfromtelling the user
that a view m ght be stale, or fromhonoring cache directives (e.g.
Cache-Control : no-store).

| ANA Consi derati ons
1. Cache Directive Registry

The registration procedure for HITP Cache Directives is defined by
Section 7.2.3 of this docunent.

The HTTP Cache Directive Registry shall be created at
<http://wmv. i ana. or g/ assi gnnent s/ htt p- cache-directi ves> and be
popul ated with the registrati ons bel ow

Fielding, et al. Expi res January 17, 2013 [Page 33]

Internet-Draft

| max-age [
| max-stale |
| mn-fresh [
| nmust-revalidate |
| no-cache |
| no-store |
| no-transform [
I I
I I
I I
I I
I I
I I
I I

only-if-cached
private
proxy-revalidate
public

S- maxage

stale-if-error
stal e-whil e-reval i date

9.2. Warn Code Registry

The registration procedure for

Sect i

[RFC5861]

on

NNNNNNNNNNNAN

HTTP/ 1.1, Part 6

1.3, Section 7.2.2.7
1.4

1.5

2.5

1.1, Section 7.2.2.3
1.2, Section 7.2.2.4
1.6, Section 7.2.2.9
1.7

2.2

2.6

2.1

.2.8
Section 4
Section 3

[RFC5861] ,

Section 7.6.8 of this docunent.

The HTTP Warn Code Regi stry shal
<http://ww.iana. org/ assi gnment s/ http-cache-directives> and be
popul ated with the registrati ons bel ow

be created at

HTTP Warn Codes is defined by

July 2012

I S . +
| Warn Code | Short Description | Reference [
Fommemeeeas R 'Urrreeaeees . +
| 110 | Response is Stale | Section 7.6.1
| 111 | Revalidation Fail ed | Section 7.6.2
| 112 | Disconnected Operation | Section 7.6.3
| 113 | Heuristic Expiration | Section 7.6.4
| 199 | M scellaneous Warning | Section 7.6.5
| 214 | Transformation Applied | Section 7.6.6
| 299 | M scellaneous Persistent Warning | Section 7.6.7
Fom e e e e - - o e e e e e e e e e e e e e ee o e e e o +

9.3. Header Field Registrati

on

The Message Header Field Registry located at <http://ww.iana. org/
assi gnnent s/ nessage- header s/ message- header - i ndex. ht m > shal
regi strations bel ow (see [RFC3864]):

updated with the pernanent

Fi el ding, et al

Expi res January 17, 2013

be

[Page 34]

I nternet-Draft HTTP/ 1.1, Part 6 July 2012
e [[oo +
| Header Field Name | Protocol | Status | Reference
B Fom e - Fom e - TSRS +
| Age | http | standard | Section 7.1
| Cache- Control | http | standard | Section 7.2 |
| Expires | http | standard | Section 7.3
| Pragma | http | standard | Section 7.4
| Vary | http | standard | Section 7.5
| Warning | http | standard | Section 7.6 |
S Fom e o - Fom e o - e e e - +
The change controller is: "IETF (iesg@etf.org) - Internet
Engi neering Task Force".

10. Security Considerations
Caches expose additional potential vulnerabilities, since the

contents of the cache represent an attractive target for nalicious

expl oi tation.
is conpl ete,

Because cache contents persist after an HTTP request
an attack on the cache can revea

information | ong after

a user believes that the informati on has been renpved fromthe

network. Therefore,
i nformati on.
11. Acknow edgnents

See Section 9 of [Partl].

cache contents need to be protected as sensitive

12. References
12.1. Nornmative References
[Part 1] Fielding, R, Ed., Lafon, Y., Ed., and J. Reschke, Ed.,
"HTTP/ 1.1, part 1: Message Routing and Syntax"",
draft-ietf-httpbis-pl-nessaging-20 (work in progress),
July 2012
[Part 2] Fielding, R, Ed., Lafon, Y., Ed., and J. Reschke, Ed.,
"HTTP/ 1.1, part 2: Semantics and Payl oads"
draft-ietf-httpbis-p2-semantics-20 (work in progress),
July 2012
[Part 4] Fielding, R, Ed., Lafon, Y., Ed., and J. Reschke, Ed.,
"HTTP/ 1.1, part 4: Conditional Requests",
draft-ietf-httpbis-p4-conditional-20 (work in progress),
July 2012
[Part 5] Fielding, R, Ed., Lafon, Y., Ed., and J. Reschke, Ed.,
Fielding, et al. Expi res January 17, 2013 [Page 35]

Internet-Draft HTTP/ 1.1, Part 6 July 2012

"HTTP/ 1.1, part 5: Range Requests",
draft-ietf-httpbis-p5-range-20 (work in progress),
July 2012.

[Part 7] Fielding, R, Ed., Lafon, Y., Ed., and J. Reschke, Ed.,
"HTTP/ 1.1, part 7: Authentication",
draft-ietf-httpbis-p7-auth-20 (work in progress),

July 2012.

[RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
Requi renment Levels", BCP 14, RFC 2119, March 1997.

[RFC5234] Crocker, D., Ed. and P. Overell, "Augnmented BNF for Syntax
Speci fications: ABNF', STD 68, RFC 5234, January 2008.

12.2. Informative References

[RFC1305] MIls, D., "Network Time Protocol (Version 3)
Speci fication, |nplenentation", RFC 1305, March 1992.

[RFC2616] Fielding, R, GCettys, J., Mgul, J., Frystyk, H,
Masinter, L., Leach, P., and T. Berners-Lee, "Hypertext
Transfer Protocol -- HTTP/1.1", RFC 2616, June 1999.

[RFC3864] Klyne, G, Nottingham M, and J. Mgul, "Registration
Procedures for Message Header Fields", BCP 90, RFC 3864,
Sept enber 2004.

[RFC5226] Narten, T. and H Alvestrand, "Quidelines for Witing an
I ANA Consi derations Section in RFCs", BCP 26, RFC 5226,
May 2008.

[RFC5861] Nottingham M, "HITP Cache-Control Extensions for Stale
Content", RFC 5861, April 2010.

Appendi x A, Changes from RFC 2616

Make the specified age cal culation algorithmless conservative.
(Section 4.1.3)

Renove requirenment to consider Content-Location in successful
responses in order to deternmine the appropriate response to use.
(Section 4.2)

Clarify denial of service attack avoidance requirement. (Section 6)

Change ABNF productions for header fields to only define the field
val ue. (Section 7)

Fielding, et al. Expi res January 17, 2013 [Page 36]

Internet-Draft HTTP/ 1.1, Part 6 July 2012

Do not mention RFC 2047 encodi ng and nultiple | anguages in Warning
header fields anynore, as these aspects never were inpl emented.
(Section 7.6)

I ntroduce Cache Directive and Warn Code Registries. (Section 7.2.3
and Section 7.6.38)

Appendi x B. I nported ABNF

The following core rules are included by reference, as defined in
Appendi x B.1 of [RFC5234]: ALPHA (letters), CR (carriage return),
CRLF (CR LF), CTL (controls), DIAT (decinmal 0-9), DQOTE (doubl e
quote), HEXDI G (hexadecimal 0-9/A-F/a-f), LF (line feed), OCTET (any
8-bit sequence of data), SP (space), and VCHAR (any visible US-ASClI
character).

The rules below are defined in [Parti]:
ons

fiel d-nane
quot ed-string

<ON5, defined in [Partl], Section 3.2.1>
<field-name, defined in [Partl], Section 3.2>
<quot ed-string, defined in [Partl], Section 3.2.4>

t oken <t oken, defined in [Partl], Section 3.2.4>
port = <port, defined in [Partl], Section 2.8>
pseudonym = <pseudonym defined in [Partl], Section 6.2>
uri - host = <uri-host, defined in [Partl], Section 2.8>

The rules below are defined in other parts:

HTTP- dat e = <HTTP-date, defined in [Part2], Section 5.1>

Fielding, et al. Expi res January 17, 2013 [Page 37]

Internet-Draft HTTP/ 1.1, Part 6 July 2012

Appendi x C. Col |l ected ABNF
Age = delta-seconds

Cache-Control = *("," OAN8) cache-directive *(OB "," [ONB
cache-directive])

Expires = HITP-date
HTTP-date = <HTTP-date, defined in [Part2], Section 5.1>

ON5 = <ON5, defined in [Partl], Section 3.2.1>

Pragma = *("," OA5) pragna-directive *(ON5 "," [ONB
pragma-directive])

Vary = "*" [(. *("," OM) field-nane *(ON8 "," [OAB field-nanme]
))

Warning = *("," OA5) warning-value *(O "," [OA5 war ni ng-val ue]
)

cache-directive = token ["=" (token / quoted-string)]

delta-seconds = 1*DIA T

ext ensi on-pragma = token ["=" (token / quoted-string)]
field-nane = <field-nanme, defined in [Partl], Section 3.2>

port = <port, defined in [Partl], Section 2.8>

pragma-directive = "no-cache" / extension-pragm

pseudonym = <pseudonym defined in [Partl], Section 6.2>

quot ed-string = <quoted-string, defined in [Partl], Section 3.2.4>
token = <token, defined in [Partl], Section 3.2.4>

uri-host = <uri-host, defined in [Partl], Section 2.8>

warn-agent = (uri-host [":" port]) / pseudonym
warn-code = 3DIA T
war n- dat e = DQUOTE HTTP- dat e DQUOTE

war n-t ext quot ed-string
war ni ng-val ue = warn-code SP warn-agent SP warn-text [SP warn-date

]

Fielding, et al. Expi res January 17, 2013 [Page 38]

Internet-Draft HTTP/ 1.1, Part 6 July 2012

Appendi x D. Change Log (to be renoved by RFC Editor before publication)
Changes up to the first Wrking Goup Last Call draft are summarized
in <http://trac.tools.ietf.org/htm/
draft-ietf-httpbis-p6-cache-19#appendi x- C.

D.1. Since draft-ietf-httpbis-p6-cache-19

Cl osed i ssues:

o0 <http://tools.ietf.org/wg/httpbis/trac/ticket/307> "untangle
Cache- Control ABNF"

0o <http://tools.ietf.org/wg/httpbis/trac/ticket/353> "Miltiple
val ues in Cache-Control header fields"

o0 <http://tools.ietf.org/wy/httpbis/trac/ticket/355>. "Case
sensitivity of header fields in CC val ues”

0o <http://tools.ietf.org/wg/httpbis/trac/ticket/356>: "Spurious
" MAYs' "

o0 <http://tools.ietf.org/wg/httpbis/trac/ticket/360> "enhance
consi derations for new cache control directives"

o0 <http://tools.ietf.org/wg/httpbis/trac/ticket/361>: "ABNF
requirenents for recipients”

o0 <http://tools.ietf.org/wy/httpbis/trac/ticket/368>. "note
i ntroduction of new | ANA registries as normative changes”

I ndex
1
110 Response is Stale (warn code) 31
111 Revalidation Failed (warn code) 32
112 Di sconnected Operation (warn code) 32
113 Heuristic Expiration (warn code) 32
199 M scel |l aneous Warning (warn code) 32
2
214 Transformation Applied (warn code) 32
299 M scel | aneous Persistent Warning (warn code) 32
A

age 5
Age header field 20

Fielding, et al. Expi res January 17, 2013 [Page 39]

Internet-Draft

C

Fi el ding, et al

cache 4

Cache Directives
max- age 22, 25
max-stale 22
mn-fresh 22
nust-revalidate 25
no-cache 21, 24
no-store 21, 25
no-transform 23, 26
only-if-cached 23
private 23
proxy-revalidate 25
public 23
S- maxage 26

cache entry 7

cache key 7

Cache- Control header field 20

cacheable 4

Expi res header field 28
explicit expiration tine 5

first-hand 5
fresh 5
freshness lifetime 5

G anmar
Age 20
Cache- Cont r ol 21
cache-directive 21
del ta-seconds 7

Expires 28

extensi on-pragma 29
Pragma 29
pragma-directive 29
Vary 29

war n-agent 30
war n- code 30
warn-date 30
warn-text 30
Warning 30

war ni ng-val ue 30

HTTP/ 1.1, Part 6

Expi res January 17, 2013

July 2012

[Page 40]

Internet-Draft

Header Fi el ds
Age 20
Cache-Contro
Expires 28
Pragnma 28
Vary 29
Warning 30

heuristic expiration time 5

max- age
Cache Directi
max- st al e
Cache Directi
m n-fresh
Cache Directi
nust-reval i dat e
Cache Directi

no- cache

Cache Directi
no-store

Cache Directi
no-transform

Cache Directi

only-if-cached
Cache Directi

Pragma header fi
private

Cache Directi
private cache 4
proxy-revalidate

Cache Directi
public

Cache Directi

S- maxage
Cache Directi

shared cache 4

stale 5

strong val i dator

Fi el ding, et al

ve

ve

ve

ve

ve

ve

ve

ve

e

ve

ve

ve

ve

HTTP/ 1.1, Part 6

20

22,
22
22

25

21,

21,

23,

23

d 28

23

25

23

26

6

Expi res January 17, 2013

25

24

25

26

July 2012

[Page 41]

Internet-Draft HTTP/ 1.1, Part 6 July 2012

Y
validator 5
strong 6
Vary header field 29
W

Warn Codes

110 Response is Stale 31

111 Revalidation Failed 32

112 Di sconnected QOperation 32

113 Heuristic Expiration 32

199 M scel | aneous Warning 32

214 Transformation Applied 32

299 M scel | aneous Persistent Warning 32
War ni ng header field 30

Aut hor s’ Addr esses

Roy T. Fielding (editor)
Adobe Systens | ncorporated
345 Park Ave

San Jose, CA 95110

USA

EMai | . fieldi ng@biv.com
URI : http://roy. gbiv.conl

Yves Lafon (editor)

Wrld Wde Web Consortium
WBC / ERCI M

2004, rte des Lucioles
Sophi a- Anti polis, AM 06902
France

EMai | . yl af on@3. org

URI : htt p://ww. raubacapeu. net/ peopl e/ yves/
Mar k Notti ngham (editor)

Rackspace

EMai | : mot @mot . net
URI : http://ww. rmot . net/

Fielding, et al. Expi res January 17, 2013 [Page 42]

Internet-Draft HTTP/ 1.1, Part 6 July 2012

Julian F. Reschke (editor)
gr eenbyt es GrbH

Haf enweg 16
Muenster, NW 48155
Ger many

EMai | : julian.reschke@reenbytes. de
URI : http://greenbytes. de/tech/webdav/

Fielding, et al. Expi res January 17, 2013 [Page 43]

