
HyBi Working Group J. Tamplin
Internet-Draft T. Yoshino
Intended status: Standards Track Google, Inc.
Expires: January 3, 2014 July 2, 2013

 A Multiplexing Extension for WebSockets
 draft-ietf-hybi-websocket-multiplexing-11

Abstract

 The WebSocket Protocol [RFC6455] requires a new transport connection
 for every WebSocket connection. This presents a scalability problem
 when many clients connect to the same server, and is made worse by
 having multiple clients running in different tabs of the same user
 agent. This extension provides a way for separate logical WebSocket
 connections to share an underlying transport connection.

 Please send feedback to the hybi@ietf.org mailing list.

Status of this Memo

 This Internet-Draft is submitted to IETF in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at http://datatracker.ietf.org/drafts/current.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on January 3, 2014.

Copyright Notice

 Copyright (c) 2013 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust’s Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must

Tamplin & Yoshino Expires January 3, 2014 [Page 1]

Internet-Draft A Multiplexing Extension for WebSockets July 2013

 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

 1. Overview . 3
 1.1. Physical Connection and Logical Channels 3
 1.2. Usecase . 3
 2. Conformance Requirements 4
 3. Multiplexed Connections 5
 4. Extension Negotiation . 7
 5. Interaction with other Extensions / Framing Mechanisms 8
 5.1. Ordering Extensions 8
 5.1.1. Efficiency . 8
 5.1.2. Security . 9
 6. Flow Control . 10
 6.1. New Channel Slot . 10
 6.2. Send Quota . 10
 7. Framing . 12
 8. Encapsulation . 14
 9. Multiplex Control Messages 16
 9.1. Number Encoding in Multiplex Control Blocks 17
 9.2. AddChannelRequest . 17
 9.3. AddChannelResponse . 19
 9.4. FlowControl . 20
 9.5. DropChannel . 21
 9.5.1. Drop Reason Codes 23
 9.6. NewChannelSlot . 25
 10. Examples . 28
 11. Client Behavior . 30
 12. Buffering . 31
 13. Fairness among Logical Channels 32
 14. Proxies . 33
 15. Timeout . 34
 16. Close the Logical Channel 35
 17. Fail the Logical Channel 36
 18. Fail the Physical Connection 37
 19. Operations and Events on Multiplexed Connection 38
 20. Security Considerations 39
 21. IANA Considerations . 40
 22. References . 41
 22.1. Normative References 41
 22.2. Informative References 41
 Authors’ Addresses . 42

Tamplin & Yoshino Expires January 3, 2014 [Page 2]

Internet-Draft A Multiplexing Extension for WebSockets July 2013

1. Overview

 This document describes a multiplexing extension for the WebSocket
 Protocol. With this extension, one TCP connection can provide
 multiple virtual WebSocket connections by encapsulating messages
 tagged with a channel ID. A client that supports this extension will
 advertise support for it in the client’s opening handshake using the
 "Sec-WebSocket-Extensions" header. If a server supports this
 extension and configuration offered by the extension parameters in
 the peer client’s request, the server accepts the use of this
 extension by including a response in the "Sec-WebSocket-Extensions"
 header in the server’s opening handshake.

1.1. Physical Connection and Logical Channels

 Under use of this extension, one transport connection is shared by
 multiple application-level instances. The WebSocket connection which
 lies directly on the TCP connection and negotiated this multiplexing
 extension is called "physical connection". Virtual WebSocket
 connections established for each application-level instance are
 called "multiplexed connections". Data channels virtually
 established by ID tagging are called "logical channels". This
 extension assigns a non-zero integer ID for each multiplexed
 connection. Each logical channel with a non-zero integer ID
 exchanges frames of the multiplexed connection of that ID. The
 logical channel with an ID of 0 exchanges data to control
 multiplexing.

 The ID used for distinguishing data for different logical channels is
 attached to each encapsulated frames. It is placed at the head of a
 message that encapsulates the original frame of a multiplex
 connection. The field is called "logical channel ID tag field".

1.2. Usecase

 Multiplexing could be done by using Web Workers. One limitation of
 Web Workers is that it cannot multiplex traffic for different
 origins. WebSocket protocol level multiplexing enables that. Large
 scale service provides may employ layer-7 load balancing system. For
 such system, it’s good that multiplexing is specified at the protocol
 level, not application level.

Tamplin & Yoshino Expires January 3, 2014 [Page 3]

Internet-Draft A Multiplexing Extension for WebSockets July 2013

2. Conformance Requirements

 All diagrams, examples, and notes in this specification are non-
 normative, as are all sections explicitly marked non-normative.
 Everything else in this specification is normative.

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in RFC2119 [RFC2119].

 Requirements phrased in the imperative as part of algorithms (such as
 "strip any leading space characters" or "return false and abort these
 steps") are to be interpreted with the meaning of the key word
 ("must", "should", "may", etc) used in introducing the algorithm.

 Conformance requirements phrased as algorithms or specific steps MAY
 be implemented in any manner, so long as the end result is
 equivalent. (In particular, the algorithms defined in this
 specification are intended to be easy to follow, and not intended to
 be performant.)

Tamplin & Yoshino Expires January 3, 2014 [Page 4]

Internet-Draft A Multiplexing Extension for WebSockets July 2013

3. Multiplexed Connections

 This multiplexing extension maintains separate logical channels, each
 of which provides fully the logical equivalent of an independent
 WebSocket connection, including separate handshake headers. If the
 multiplexing extension is successfully negotiated, one multiplexed
 connection is automatically established, and the headers on the
 client’s and server’s opening handshake of the physical connection
 are automatically taken to mean ones for the multiplexed connection
 after removing physical connection specific header entries. This
 automatically opened multiplexed connection is called "Implicitly
 Opened Connection". It’s served by the logical channel with ID of 1
 which is also implicitly opened on completion of the opening
 handshake.

 New logical channels are added by the client issuing the
 AddChannelRequest multiplex control message. Note that only the
 client may initiate new WebSocket connections. An AddChannelRequest
 contains any handshake headers for the corresponding new multiplexed
 connection. The server’s AddChannelResponse likewise contains any
 handshake headers for the corresponding new multiplexed connection.

 Logical channel with an ID of 0 is reserved and called "control
 channel". It’s automatically opened for exchanging multiplex control
 messages.

 If there’re existing connections between a client and a peer server
 where this multiplexing extensions was successfully negotiated, and
 the client wants to create a new logical channel, the client chooses
 one from them and add a new logical channel to the connection.
 Otherwise, the client SHOULD attempt to open a new underlying
 connection to the server and open a new WebSocket connection on it.

 Once the multiplexing extension is negotiated on a connection, all
 frames of multiplexed connection are tagged with a channel ID number
 and encapsulated into binary messages. Channel IDs are assigned by
 the client on issuing an AddChannelRequest.

 A receiver MAY process frames of different multiplexed connections in
 parallel. A receiver MUST process multiplex control messages
 exclusively.

 A receiver MUST _Fail the Physical Connection_ if any of these rules
 are violated by the sender.

 If the tuple of /secure/ flag, /port/ [RFC6455] and the IP address
 which /host/ [RFC6455] resolves to is the same for multiple
 application instances, their connections may be multiplexed onto the

Tamplin & Yoshino Expires January 3, 2014 [Page 5]

Internet-Draft A Multiplexing Extension for WebSockets July 2013

 same physical connection by creating logical channels for each of the
 instances.

 A logical channel with /secure/ flag [RFC6455] and one without
 /secure/ flag MUST NOT be multiplexed onto the same physical
 connection. An endpoint may be required to open another physical
 connection for this case even if there’s an existing physical
 connection with multiplexing extension successfully negotiated. For
 example, if a client is configured to use different TLS client
 certificates for each logical channel, the client needs to establish
 separate TLS connections.

Tamplin & Yoshino Expires January 3, 2014 [Page 6]

Internet-Draft A Multiplexing Extension for WebSockets July 2013

4. Extension Negotiation

 The registered extension token for this extension is "mux".

 To request use of the WebSocket Multiplexing Extension, a client
 includes an element with the "mux" extension token as its extension
 identifier in the "Sec-WebSocket-Extensions" header in the client’s
 opening handshake. The element MAY contain an extension parameter
 named "quota". The value of the "quota" extension parameter
 specifies the server’s send quota for the "Implicitly Opened
 Connection".

 A server accepts use of the WebSocket Multiplexing Extension by
 including an element with the "mux" extension token in the
 "Sec-WebSocket-Extensions" header in the server’s opening handshake.
 The element has no extension parameter.

 A server rejects use of the WebSocket Multiplexing Extension by not
 including the element for the extension in the
 "Sec-WebSocket-Extensions" header in the server’s opening handshake.
 If any elements were listed after the element for the WebSocket
 Multiplexing Extension in the "Sec-WebSocket-Extensions" from the
 client, they MUST also be rejected.

Tamplin & Yoshino Expires January 3, 2014 [Page 7]

Internet-Draft A Multiplexing Extension for WebSockets July 2013

5. Interaction with other Extensions / Framing Mechanisms

 If any extension (e.g. compression) is placed before this extension
 in the "Sec-WebSocket-Extensions" header of the physical connection,
 that extension is applied to multiplexed connections unless otherwise
 noted in the extension’s spec.

 If any extension is placed after this extension in the
 "Sec-WebSocket-Extensions" header of the physical connection, on the
 sender side that extension is applied to frames after multiplexing,
 and on the receiver side that extension is applied to frames before
 demultiplexing, unless otherwise noted in the extension’s spec.

 A client MAY request an extension for both the physical connection
 and the "Implicitly Opened Connection" by placing extension entries
 before and after the entry of this multiplexing extension. If
 enabling the extension for both the physical connection and
 "Implicitly Opened Connection" doesn’t make sense, the server rejects
 either of them.

 For example, if we have an extension called foobar that can be used
 either the physical connection or multiplexed connections, the client
 sends

 Sec-WebSocket-Extensions: foobar, mux, foobar

 in the client’s opening handshake of the physical connection to
 request use of the foobar extension for both physical and multiplexed
 connections. Then, the server would send back

 Sec-WebSocket-Extensions: mux, foobar

 to apply the foobar extension for the _Implicitly Opened Connection_,
 or

 Sec-WebSocket-Extensions: foobar, mux

 to apply the foobar extension to the physical connection.

5.1. Ordering Extensions

5.1.1. Efficiency

 Where to apply a compression extension makes difference to resource
 consumption and flexibility. Compression algorithms often use some
 memory to keep its context. Some of compression extensions may keep
 using the same context for all the messages on the same connection.

Tamplin & Yoshino Expires January 3, 2014 [Page 8]

Internet-Draft A Multiplexing Extension for WebSockets July 2013

 If such a compression extension is applied to the physical
 connection, intermediaries that want to demultiplex or multiplex the
 connection need to decompress (before demultiplexing) and recompress
 (before multiplexing again) all the frames.

 If such a compression extension is applied to each multiplexed
 connection, we can control to which multiplexed connection we apply
 the compression, so we can avoid applying compression to multiplexed
 connections transferring incompressible data. For intermediaries
 that want to demultiplex a connection with this extension and forward
 encapsulating messages to different backends, it’s also useful
 because each encapsulating message can be forwarded without
 uncompressing. However, compressing each multiplexed connection is
 expensive in terms of memory consumption.

5.1.2. Security

 If any history-based compression extension such as DEFLATE is applied
 to the physical connection that is tunneled over Transport Layer
 Security (TLS) [RFC2818], it may spoil TLS’s confidentiality [CRIME].
 If the client may run malicious script such as a web browser, it MUST
 NOT request use of the multiplexing extension and such a compression
 extension in the order in which the compression extension is applied
 to the physical connection side.

Tamplin & Yoshino Expires January 3, 2014 [Page 9]

Internet-Draft A Multiplexing Extension for WebSockets July 2013

6. Flow Control

6.1. New Channel Slot

 A client has a pool of slots called "new channel slots". It’s
 initialized to be empty on establishment of the physical connection.

 A NewChannelSlot multiplex control message sent by the server adds
 slots to the pool.

 Each slot has a non-negative integer value called "initial send
 quota". Its function is explained in the later subsection.

 When sending an AddChannelRequest, a client picks the oldest new
 channel slot from the pool and remove it from the pool. If there are
 no slots in the pool, the client MUST NOT issue an AddChannelRequest
 until a slot becomes available. An endpoint MUST _Fail the Logical
 Channel_ with drop reason code of 2007 when it’s clear that the other
 peer violates this rule about new channel slots.

 A server can regulate the rate of AddChannelRequests by not
 replenishing the pool.

6.2. Send Quota

 For each logical channel with non-zero ID, a server and client are
 respectively given a non-negative integer value called "send quota".

 For the logical channel created for the "Implicitly Opened
 Connection", the client’s "send quota" is initialized to 0 on
 establishment of the physical connection. The server’s "send quota"
 for the logical channel is initialized when it sends its opening
 handshake for the physical connection. The "quota" extension
 parameter included in the extension offer for this multiplexing
 extension in the client’s opening handshake for the physical
 connection specifies the initial value of the server’s send quota.
 If the "quota" extension parameter is not specified, the initial
 value is set to 0. If the "quota" extension parameter is specified,
 the initial value is the parameter’s value parsed as a non-negative
 integer in decimal.

 For a logical channel added by issuing an AddChannelRequest, a client
 gets "send quota" equal to the "initial send quota" value on the "new
 channel slot" picked for that AddChannelRequest. Initialization
 timing is when the client completes sending the AddChannelRequest.

 For a logical channel added by accepting an AddChannelRequest, a
 server gets "send quota" of 0. Initialization timing is when the

Tamplin & Yoshino Expires January 3, 2014 [Page 10]

Internet-Draft A Multiplexing Extension for WebSockets July 2013

 server completes sending the corresponding AddChannelResponse.

 When an endpoint receives a FlowControl for a logical channel, its
 "send quota" for the channel gets replenished.

 An endpoint MUST NOT send a frame on a logical channel with non-zero
 ID while the "send quota" of the endpoint for that logical channel is
 less than the cost of the frame. The cost of a frame is sum of the
 following two values:

 o The length of the "Payload data" of the frame.

 o Per-message extra cost. It’s 1 if the frame is the first fragment
 of a message. Otherwise, it’s 0.

 An endpoint MUST _Fail the Logical Channel_ with drop reason code of
 3005 when it’s clear that the other peer violates this rule about
 send quota.

 When a frame is sent on a logical channel with non-zero ID, the cost
 of the frame is subtracted from the "send quota" of the endpoint for
 that logical channel.

 An endpoint SHOULD NOT delay replenishment of the other peer’s "send
 quota" for a logical channel when it has more room for accepting new
 data for the channel unless the size of quota it can replenish is too
 small and therefore replenishing it pushes down overall performance.

Tamplin & Yoshino Expires January 3, 2014 [Page 11]

Internet-Draft A Multiplexing Extension for WebSockets July 2013

7. Framing

 The multiplexing extension uses binary messages to transfer both data
 for controlling multiplexing and data of multiplexed connections.
 These binary messages are called "encapsulating messages" and have
 the logical channel ID tag field at the head of them. Logical
 channel ID of 0 is designated for control channel where multiplex
 control messages are exchanged. Non-zero logical channel IDs are
 used for non-control channels transferring data for multiplexed
 connections.

 The ID in the logical channel ID tag field is encoded as variable
 number of bytes (1, 2, 3 or 4 octets), as follows:

 0 1 2 3 4 5 6 7
 +-+-------------+
 |0|Channel ID(7)|
 +-+-------------+

 0 1
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5
 +-+-+---------------------------+
 |1|0| Channel ID (14) |
 +-+-+---------------------------+

 0 1 2
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3
 +-+-+-+---+
 |1|1|0| Channel ID (21) |
 +-+-+-+---+

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+-+-+---+
 |1|1|1| Channel ID (29) |
 +-+-+-+---+

 This encoding is also used by multiplex control messages where we
 need to specify the ID of the objective channel.

 A field for which it’s specified to use this encoding is considered
 to be invalid when more than the minimal number of bytes necessary to
 represent the integer is used.

 Unless any other negotiated extension defines the meaning of
 encapsulating messages with data opcodes other than binary, endpoints
 MUST NOT send any data message other than "binary". An endpoint
 received such a message MUST _Fail the Physical Connection_ with drop

Tamplin & Yoshino Expires January 3, 2014 [Page 12]

Internet-Draft A Multiplexing Extension for WebSockets July 2013

 reason code of 2001.

 An endpoint received a binary message with an incomplete or invalid
 logical channel ID tag field at the head of the message MUST _Fail
 the Physical Connection_ with drop reason code of 2002.

 See Section 8 (non-control channel) and Section 9 (control channel)
 for more details about fields that follow the logical channel ID tag
 field.

Tamplin & Yoshino Expires January 3, 2014 [Page 13]

Internet-Draft A Multiplexing Extension for WebSockets July 2013

8. Encapsulation

 This extension encapsulates each frame of a multiplexed connection
 into an encapsulating message. Payload Data of an encapsulating
 message is obtained by concatenating the following data in the order
 they are listed:

 1. The logical channel ID tag field representing the ID of the
 logical channel for the multiplexed connection.

 2. FIN, RSV1, RSV2, RSV3 and opcode of the original frame.

 3. Unmasked "Payload Data" of the original frame.

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +---+
 | Logical channel ID tag |
 | (8/16/24/32) |
 + - +
 | Logical channel ID tag continued |
 +-+-+-+-+-------+---+
 |F|R|R|R| opcode| Payload Data of original frame |
 |I|S|S|S| (4) | |
 |N|V|V|V| | |
 | |1|2|3| | |
 +-+-+-+-+-------+ - +
 : Payload Data of original frame continued ... :
 + - +
 : Payload Data of original frame continued ... :
 +---+

 A receiver restores the original frame from the Payload Data and
 deliver the restored frame to the corresponding multiplexed
 connection based on the ID in the logical channel ID tag field in the
 order they are received.

 This extension MAY change the fragmentation of the original message
 before encapsulation in order to insert multiplex control messages or
 adjust the amount of data to flush along with flow control.

 When an encapsulated frame with non continuation data opcode is
 received though the last encapsulated data message of that logical
 channel has not yet been terminated by an encapsulated frame with the
 FIN bit set, the endpoint MUST _Fail the Logical Channel_ with drop
 reason code of 3009.

Tamplin & Yoshino Expires January 3, 2014 [Page 14]

Internet-Draft A Multiplexing Extension for WebSockets July 2013

 When an encapsulated frame with the continuation opcode is received
 though there’s no preceding encapsulated message that has not yet
 been terminated on that logical channel, the endpoint MUST _Fail the
 Logical Channel_ with drop reason code of 3009.

 On logical channels, control messages MAY also be fragmented.
 Fragmented control messages are delivered to the corresponding
 multiplexed connection after receiving all fragments and
 defragmenting them. For non-first fragments of a control message,
 the continuation opcode (%x0) MUST be used for the opcode field as
 well as data messages. On the same logical channel, fragments for
 any other message MUST NOT be injected between fragments of a control
 message. A demultiplexer received an encapsulated frame with a
 control opcode and the FIN bit unset MUST process the following
 encapsulated frames on the same logical channel as the encapsulated
 fragments of that control message until it encounters one with the
 FIN bit set. A demultiplexer encountered any encapsulated frame
 whose opcode is not continuation injected between fragments of a
 control message on the same logical channel MUST _Fail the Logical
 Channel_ with drop reason code of 3009.

 To allow for adjustment of fragmentation, this multiplexing extension
 MUST NOT be used after any extension that does any of the followings:

 o Require frame boundary on its output to be preserved.

 o Use the "Extension data" field or any of the reserved bits on the
 WebSocket header as per-frame attribute.

 Intermediaries that don’t understand the WebSocket Multiplexing
 Extension MAY fragment the encapsulating messages.

 When received a binary message with a non-zero logical channel ID of
 an inactive channel (e.g. no channel has been opened for the logical
 channel ID, or the channel has been closed (by a DropChannel or an
 AddChannelResponse with the failure bit set) and not yet reopened),
 the endpoint MUST ignore the message.

 When received a binary message with a non-zero logical channel ID
 which contains no octets in its payload after octets for the logical
 channel ID tag field, the endpoint _Fail the Physical Connection_
 with drop reason code of 2003.

Tamplin & Yoshino Expires January 3, 2014 [Page 15]

Internet-Draft A Multiplexing Extension for WebSockets July 2013

9. Multiplex Control Messages

 A binary message with the logical channel ID of 0 contains one
 multiplex control block in the "Payload data" portion.

 0 1 2 3 4 5 6 7
 +---------------+
 |Channel ID of 0|
 +---------------+
 |Multiplex |
 :control block :
 | |
 +---------------+

 Each multiplex control block has fields as follows:

 0 1 2 3 4 5 6 7
 +-----+---------+
 | Opc | |
 +-----+ :
 | Opc specific :
 : data :
 | |
 +---------------+

 Opc

 A multiplex control opcode as defined in the following
 subsections. Opc of 5-7 are reserved for future use.

 Opc specific data

 Data interpreted according to that opcode.

 Each of the following subsections describes one multiplex control
 opcode and how to interpret opc specific data for that opcode.

 If any reserved opcode is set to opc, the endpoint MUST _Fail the
 Physical Connection_ with drop reason code of 2004.

 If any truncated multiplex control message is found, the endpoint
 MUST _Fail the Physical Connection_ with drop reason code of 2005
 unless _Fail the Physical Connection_ is already done for any other
 error.

 RSVs in the field diagrams of multiplex control blocks in this
 section means reserved bits. If any multiplex control block with any
 of the reserved bits set is found, the endpoint MUST _Fail the

Tamplin & Yoshino Expires January 3, 2014 [Page 16]

Internet-Draft A Multiplexing Extension for WebSockets July 2013

 Physical Connection_ with drop reason code of 2005 unless _Fail the
 Physical Connection_ is already done for any other error.

9.1. Number Encoding in Multiplex Control Blocks

 In addition to the logical channel ID encoding defined in the
 Section 7, we reuse the number encoding defined for payload length in
 the Section 5.2 of [RFC6455] for multiplex control blocks with a
 little modification. We call this number encoding "1/3/9 number
 encoding". Integers up to 0x7D MUST be encoded into 1 octet field
 containing the integer as is. Integers from 0x7E to 0xFFFF MUST be
 encoded into an octet of 0x7E followed by two octets containing the
 integer in network byte order. Integers from 0x10000 to
 0x7FFFFFFFFFFFFFFF MUST be encoded into an octet of 0x7F followed by
 eight octets containing the integer in network byte order. A field
 using the 1/3/9 number encoding is considered to be invalid when any
 of the following conditions is violated.

 o The most significant bit of the first octet MUST be 0.

 o The minimal number of bytes necessary to represent the integer
 MUST be used.

 o If the first byte is 0x7F, the most significant bit of the next
 octet MUST be 0.

 When received a multiplex control block with an invalid field using
 the 1/3/9 number encoding, the endpoint MUST _Fail the Physical
 Connection_ with drop reason code of 2005 unless _Fail the Physical
 Connection_ is already done for any other error.

9.2. AddChannelRequest

 AddChannelRequest is sent only by clients to create a new logical
 channel, as if a new WebSocket connection were received on a separate
 transport connection.

 When a client received an AddChannelRequest, it MUST _Fail the
 Physical Connection_ with drop reason code of 2005 unless _Fail the
 Physical Connection_ is already done for any other error.

 Multiplex control opcode of AddChannelRequest is 0.

 AddChannelRequest has fields as follows:

Tamplin & Yoshino Expires January 3, 2014 [Page 17]

Internet-Draft A Multiplexing Extension for WebSockets July 2013

 0 1 2 3 4 5 6 7
 +-+-+-+---------+
 |0|0|0| RSV |
 +-+-+-+---------+
 |Objective |
 :channel ID :
 |(1-4 octet) |
 +---------------+
 |Handshake |
 : :
 | |
 +---------------+

 Objective channel ID

 The ID of the logical channel objective to this operation.
 Encoding is the same as one used for the logical channel ID tag
 field. An endpoint MUST _Fail the Physical Connection_ with drop
 reason code of 2005 if this field is invalid.

 Handshake

 The rest is the handshake field. The client’s opening handshake
 as defined in Section 4 of RFC 6455 [RFC6455] for the new
 multiplexed connection including the CRLF following the last
 header. The "Upgrade", "Sec-WebSocket-Key" and
 "Sec-WebSocket-Version" header are excluded. The
 "Sec-WebSocket-Extensions" header contains only extensions applied
 to the multiplexed connection. An endpoint MUST _Fail the
 Physical Connection_ with drop reason code of 2009 if any problem
 is found in parsing this field.

 If the logical channel ID specified by an AddChannelRequest is in use
 (including 0 for the control channel), it MUST _Fail the Physical
 Connection_ with drop reason code of 2006.

 To accept an AddChannelRequest, the endpoint MUST send an
 AddChannelResponse with the failure bit unset and the objective
 channel ID field set to the objective channel ID specified in the
 AddChannelRequest. In this case, the channel becomes active.

 To respond to an AddChannelRequest with status meaning handshake
 failure, the endpoint MUST send an AddChannelResponse with the
 failure bit set and its objective channel ID field set to the
 objective channel ID specified in the AddChannelRequest. In this
 case, the channel stays inactive.

 An endpoint MAY reject an AddChannelRequest also by doing _Fail the

Tamplin & Yoshino Expires January 3, 2014 [Page 18]

Internet-Draft A Multiplexing Extension for WebSockets July 2013

 Logical Channel_ with drop reason code of 3000. In this case, the
 channel stays inactive.

 A server MAY delay responding to an AddChannelRequest and proceed to
 process subsequent multiplex control blocks or frames for multiplexed
 connections.

 Channel ID assignment is done by client side. A client MAY use any
 algorithm to choose logical channel IDs for new channels. Note that
 logical channel ID assignment might be changed by intermediaries, so
 it’s not guaranteed that the value of logical channel ID is the same
 on the other peer.

 Different from non-multiplexed WebSocket connection, a client MAY
 send frames of multiplexed connections except for "Implicitly Opened
 Connection" before receiving AddChannelResponse as far as there’s
 sufficient send quota. In case the AddChannelRequest fails, those
 frames are discarded by the peer server. This doesn’t mean that
 users of this protocol such as the WebSocket API are required to
 allow their users to send frames before receiving the server’s
 opening handshake.

9.3. AddChannelResponse

 AddChannelResponse is sent only by servers in response to the
 AddChannelRequest.

 When a server received an AddChannelResponse, it MUST _Fail the
 Physical Connection_ with drop reason code of 2005 unless _Fail the
 Physical Connection_ is already done for any other error.

 Multiplex control opcode of the AddChannelResponse is 1.

 AddChannelResponse has fields as follows:

 0 1 2 3 4 5 6 7
 +-+-+-+-+-------+
 |0|0|1|F| RSV |
 +-+-+-+-+-------+
 |Objective |
 :channel ID :
 |(1-4 octet) |
 +---------------+
 |Handshake |
 : :
 | |
 +---------------+

Tamplin & Yoshino Expires January 3, 2014 [Page 19]

Internet-Draft A Multiplexing Extension for WebSockets July 2013

 F

 Failure bit.

 If the failure bit is not set, then the server has accepted the
 AddChannelRequest. The handshake field contains a response to the
 request made by the AddChannelRequest, In this case, the channel
 becomes active.

 If the failure bit is set, then the server has rejected the
 AddChannelRequest and this SHOULD be treated exactly the same as
 if a separate connection was attempted and the connection was
 closed after receiving the server’s handshake. Enc MUST be set to
 identity in this case. The handshake field contains a response to
 the request made by the AddChannelRequest. In this case, the
 channel stays inactive. The sender of the AddChannelResponse with
 the failure bit set doesn’t have to send a DropChannel following
 the AddChannelResponse.

 Objective channel ID

 Same as one in the AddChannelRequest. If an inactive channel is
 specified, the endpoint MUST ignore this AddChannelResponse.

 An endpoint MUST _Fail the Physical Connection_ with drop reason
 code of 2005 if this field is invalid.

 Handshake

 The rest is the handshake field. The server’s opening handshake
 as defined in Section 4 of RFC 6455 [RFC6455] for this multiplexed
 connection. The "Upgrade" and "Sec-WebSocket-Accept" header are
 excluded. The "Sec-WebSocket-Extensions" header contains only
 extensions applied to the multiplexed connection. This field is
 encoded using the encoding specified by the Enc field.

 An endpoint MUST _Fail the Physical Connection_ with drop reason
 code of 2011 if any problem is found in parsing this field.

 If the server’s opening handshake is validated, the client MUST take
 this as _The WebSocket Connection is Established_.

9.4. FlowControl

 FlowControl is used to replenish the other peer’s send quota for the
 specified logical channel.

 Multiplex control opcode of FlowControl is 2.

Tamplin & Yoshino Expires January 3, 2014 [Page 20]

Internet-Draft A Multiplexing Extension for WebSockets July 2013

 FlowControl has fields as follows.

 0 1 2 3 4 5 6 7
 +-+-+-+---------+
 |0|1|0| RSV |
 +-+-+-+---------+
 |Objective |
 :channel ID :
 |(8-32 bit) |
 +---------------+
 |Replenished |
 :send quota :
 |(1-9 octet) |
 +---------------+

 Objective channel ID

 Same as one in the AddChannelRequest. If an inactive channel is
 specified, the endpoint MUST ignore this FlowControl. An endpoint
 MUST _Fail the Physical Connection_ with drop reason code of 2005
 if this field is invalid.

 Replenished quota

 The number of bytes the receiver can have outstanding towards the
 sender of the FlowControl message. It’s encoded by the 1/3/9
 number encoding.

 An endpoint MUST _Fail the Logical Channel_ with drop reason code of
 3006 if its send quota for the channel exceeds 0x7FFFFFFFFFFFFFFF
 when the replenished quota is added. The endpoint MAY delay this
 Fail the Logical Channel operation to process following multiplex
 control blocks and encapsulating messages that don’t affect this
 logical channel. When received a FlowControl with an invalid value
 in the replenished quota field, the endpoint MUST _Fail the Physical
 Connection_ as specified above rather than taking it as overflow.

9.5. DropChannel

 DropChannel is used to close a logical channel.

 Multiplex control opcode of DropChannel is 3.

 DropChannel has fields as follows:

Tamplin & Yoshino Expires January 3, 2014 [Page 21]

Internet-Draft A Multiplexing Extension for WebSockets July 2013

 0 1 2 3 4 5 6 7
 +-+-+-+---------+
 |0|1|1| RSV |
 +-+-+-+---------+
 |Objective |
 :channel ID :
 |(1-4 octet) |
 +---------------+
 |Reason |
 : :
 | |
 +---------------+

 Objective channel ID

 Same as one in the AddChannelRequest. An endpoint MUST _Fail the
 Physical Connection_ with drop reason code of 2005 if this field
 is invalid.

 Reason size

 The size of the reason field encoded by the 1/3/9 number encoding.
 A DropChannel block with 1-octet reason field MUST be considered
 as a truncated multiplex control block.

 Reason

 The rest is the reason of closure. Reason MAY be empty. If
 reason is not empty, the first two bytes MUST be a 2-byte unsigned
 integer (in network byte order) representing a drop reason code.
 Following the 2-byte integer, reason MAY contain UTF-8-encoded
 human readable drop reason phrase.

 When an endpoint received a DropChannel for an active non-control
 channel, the endpoint MUST tear down the logical channel, and the
 application instance that used the logical channel MUST treat this as
 closure of underlying transport.

 When an endpoint received a DropChannel in response to an
 AddChannelRequest, the endpoint MUST abort creation of the logical
 channel, and the application instance that requested creation of the
 logical channel MUST treat this as closure of underlying transport
 without receiving reply for the creation request.

 When an endpoint sent or received a DropChannel for an active non-
 control channel, the endpoint MUST mark the channel as inactive. If
 the endpoint is server and it has not already sent a DropChannel for
 the channel, it MUST send a DropChannel with drop reason code of 3008

Tamplin & Yoshino Expires January 3, 2014 [Page 22]

Internet-Draft A Multiplexing Extension for WebSockets July 2013

 so that the client can mark the ID of the channel available for a new
 AddChannelRequest.

 Once received a DropChannel for a non-control channel, the ID of the
 logical channel becomes available again for a new AddChannelRequest.

9.5.1. Drop Reason Codes

 Drop reason codes are 4 digit unsigned integers.

 1000-1999 are for normal closure on a logical channel without any
 multiplexing level error. These codes are used for dropping non-
 control channels.

 1000 Normal closure

 DropChannel with this drop reason code is commonly sent when
 Close the WebSocket Connection is made on the multiplexed
 connection.

 2000-2999 are for errors that _Fail the Physical Connection_. These
 codes are used for dropping the control channel.

 2000 Physical connection failed

 Used if a more specific error is not available.

 2001 Invalid encapsulating message

 Received a data message with non binary opcode.

 2002 Channel ID is truncated or invalid

 Received an encapsulating message with a logical channel ID which
 is truncated or invalid.

 2003 Encapsulated frame is truncated

 Received an encapsulating message that contains only the logical
 channel ID tag field with non-zero value.

 2004 Unknown multiplex control opcode

 Encountered a multiplex control block with unknown multiplex
 opcode.

Tamplin & Yoshino Expires January 3, 2014 [Page 23]

Internet-Draft A Multiplexing Extension for WebSockets July 2013

 2005 Invalid multiplex control block

 Encountered an invalid multiplex control block. E.g. objective
 channel ID is truncated, reserved bit is raised.

 2006 Channel already exists

 Received an AddChannelRequest for an active logical channel.

 2007 New channel slot violation

 Received an AddChannelRequest though the other peer has no new
 channel slot.

 2008 New channel slot overflow

 Received a NewChannelSlot that overflows the number of new channel
 slots.

 2009 Bad request

 Received an AddChannelRequest with a malformed handshake.

 2010 Unknown request encoding

 Received an AddChannelRequest with an unknown encoding type.

 2011 Bad response

 Received an AddChannelResponse with a malformed handshake.

 2012 Unknown response encoding

 Received an AddChannelResponse with an unknown encoding type.

 3000-3999 are for errors that _Fail the Logical channel_. These
 codes are used for dropping non-control channels.

 3000 Logical channel failed

 Used if a more specific error is not available.

 3005 Send quota violation

 Received an encapsulating message exceeding send quota.

Tamplin & Yoshino Expires January 3, 2014 [Page 24]

Internet-Draft A Multiplexing Extension for WebSockets July 2013

 3006 Send quota overflow

 Received a FlowControl that overflows send quota.

 3007 Idle timeout

 Terminating an idle logical channel.

 3008 DropChannel acknowledged

 Used for a DropChannel sent in response to received DropChannel.
 When a server received a DropChannel and it hasn’t sent any
 DropChannel for that logical channel, the server MUST send a
 DropChannel with this reason code so that the client can release
 the channel ID and reuse it for a new AddChannelRequest safely.

 3009 Bad fragmentation

 Received an encapsulating message with bad fragmentation that
 cannot be delivered to the corresponding multiplexed connection.

 4000-4999 are for requesting the other peer to take some actions.
 These codes are used for dropping non-control channels.

 4001 Use another physical connection

 The server is requesting the client to open a new physical
 connection and use it than adding any more logical channel until
 receiving a NewChannelSlot. A client received this reason code
 SHOULD NOT issue an AddChannelRequest on this physical connection
 until receiving a NewChannelSlot.

 4002 Busy

 The server is requesting the client to stop issuing an
 AddChannelRequest until receiving a NewChannelSlot. A client
 received this reason code SHOULD NOT issue an AddChannelRequest on
 this physical connection until receiving a NewChannelSlot.

9.6. NewChannelSlot

 NewChannelSlot is sent only by servers to add new slots to the
 client’s new channel pool.

 When a server received an NewChannelSlot, it MUST _Fail the Physical
 Connection_ with drop reason code of 2005 unless _Fail the Physical
 Connection_ is already done for any other error.

Tamplin & Yoshino Expires January 3, 2014 [Page 25]

Internet-Draft A Multiplexing Extension for WebSockets July 2013

 Multiplex control opcode of NewChannelSlot is 4.

 NewChannelSlot has fields as follows:

 0 1 2 3 4 5 6 7
 +-+-+-+-------+-+
 |1|0|0| RSV |F|
 +-+-+-+-------+-+
 |Number of slots|
 :(1-9 octet) :
 | |
 +---------------+
 |Initial send |
 :quota :
 |(1-9 octet) |
 +---------------+

 F

 Fallback bit.

 If the fallback bit is false, normal slot is added.

 If the fallback bit is true, fallback suggestion slot is added.
 Number of slots field and initial quota field MUST be 0 for
 fallback suggestion slot. When a client encounters a fallback
 suggestion slot, it MUST open a new physical connection and use it
 than adding any more logical channel on this physical connection
 until any normal slot is available.

 When received a NewChannelSlot block with the fallback bit set and
 any of the number of slots field or the initial quota field is not
 zero, the endpoint MUST _Fail the Physical Connection_ with drop
 reason code of 2005 unless _Fail the Physical Connection_ is
 already done for any other error.

 Number of slots

 The number of slots to add. It’s encoded by the 1/3/9 number
 encoding. This value MAY be 0 when it makes sense.

 Initial quota

 The initial quota each of slots added by this NewChannelSlot gets.
 It’s encoded by the 1/3/9 number encoding.

 When a client received a NewChannelSlot, the client MUST add new
 slots of the specified number. Each of new slots gets the specified

Tamplin & Yoshino Expires January 3, 2014 [Page 26]

Internet-Draft A Multiplexing Extension for WebSockets July 2013

 initial send quota.

Tamplin & Yoshino Expires January 3, 2014 [Page 27]

Internet-Draft A Multiplexing Extension for WebSockets July 2013

10. Examples

 This section is non-normative.

 The examples below assume the handshake has already completed and the
 multiplexing extension was negotiated. Quotes are for clarity.

 Frames of encapsulating messages from client to server MUST be
 masked. The examples below are not masked for simplicity.

 0x82 0x0d 0x01 0x81 "Hello world"

 This is a non-fragmented text message of "Hello world" on logical
 channel 1 encapsulated into a non-fragmented encapsulating
 message.

 0x82 0x07 0x01 0x01 "Hello" 0x82 0x08 0x01 0x80 " world"

 This is a text message of "Hello world" fragmented into two frames
 of "Hello" and " world" on logical channel 1 encapsulated into two
 non-fragmented encapsulating messages. A multiplexer may change
 fragmentation of a message before encapsulation like this so that
 frames of other logical channels (including the control channel)
 can be injected in the middle of the message.

 0x82 0x07 0x01 0x01 "Hello" 0x82 0x05 0x02 0x81 "bye" 0x82 0x08 0x01
 0x80 " world"

 This example shows how data for two logical channels are
 interleaved. There’re three non-fragmented encapsulating
 messages. As explained in the previous example, the text message
 of "Hello world" is split into two frames before encapsulation.
 The first and third frame in this example contain each of the two
 fragments of the text message of "Hello world" on logical channel
 1. The second frame contains a non-fragmented text message of
 "bye" on logical channel 2.

 0x82 0x04 0x01 0x01 "Te" 0x82 0x04 0x01 0x09 "Pi" 0x82 0x04 0x01 0x80
 "ng" 0x82 0x04 0x01 0x80 "xt"

 A ping message "Ping" is injected in the middle of a text message
 "Text" on the original connection. The multiplexer fragmented the
 ping message due to some reason into two fragments.

 0x02 0x07 0x01 0x81 "Hello" 0x80 0x06 " world"

 Encapsulating messages output from the multiplexer can be
 fragmented by intermediaries without knowledge of the Multiplexing

Tamplin & Yoshino Expires January 3, 2014 [Page 28]

Internet-Draft A Multiplexing Extension for WebSockets July 2013

 Extension. This is an example of a fragmented encapsulating
 message. It’s equivalent to the first example as a message.

 --- To be fixed ---

 This is a message on the control channel carrying one
 AddChannelRequest. The first two octets are the WebSocket
 headers. The 3rd octet is logical channel ID field of 0. The 4th
 octet has opcode and RSV field. Objective channel ID is 2.

Tamplin & Yoshino Expires January 3, 2014 [Page 29]

Internet-Draft A Multiplexing Extension for WebSockets July 2013

11. Client Behavior

 When a client is asked to _Establish a WebSocket Connection_ by some
 WebSocket application instance, it MAY choose to share an existing
 WebSocket connection if all of the following are true:

 o the multiplexing extension was successfully negotiated on that
 connection

 o the scheme portions of the URIs match exactly

 o the host portions of the URIs either match exactly or resolve to
 the same IP address (TBD: consider DNS rebind attacks)

 o the port portions of the URIs (either explicit or implied by the
 scheme) match exactly

 o the connection has an availablle logical channel ID

 If a client chooses to share the existing WebSocket connection with
 multiplexing, it sends an AddChannelRequest as described above. If
 an AddChannelRequest is accepted, WebSocket frames may be sent over
 that logical channel as normal. If the server rejects the
 AddChannelRequest, the client SHOULD attempt to open a new physical
 WebSocket connection (for example, in a shared hosting environment a
 server may not be prepared to multiplex connections from different
 customers despite having a single IP address for them).

Tamplin & Yoshino Expires January 3, 2014 [Page 30]

Internet-Draft A Multiplexing Extension for WebSockets July 2013

12. Buffering

 For data frames, a sender also SHOULD attempt to aggregate fragments
 into one packet of the underlying transport. However, care must be
 taken to avoid introducing excessive latency - the exact heuristics
 for delaying in order to aggregate blocks is TBD.

Tamplin & Yoshino Expires January 3, 2014 [Page 31]

Internet-Draft A Multiplexing Extension for WebSockets July 2013

13. Fairness among Logical Channels

 A multiplexing implementation may be requested to ensure reasonable
 fairness among the logical channels. This is accomplished in several
 ways:

 Receiver side

 o The receiver MAY limit the send quota of a logical channel by not
 replenishing it to make sure that any logical channel doesn’t
 dominate the connection.

 o Determine send quota for a logical channel considering the
 processing capacity (buffer size, processing power, throughput,
 etc.) of that logical channel. For example, when a logical
 channel with excess load cannot drain data from the connection
 smoothly, the other logical channels get stuck even when they have
 room of processing capacity. Unless there’s special need to give
 such a big quota for the channel, such condition just makes
 overall performance low.

 Sender side

 o Use a fair algorithm to select which logical channel’s data to
 send in the next WebSocket message. Simple implementations may
 choose a round-robin scheduler, while more advanced
 implementations may adjust priority based on the amount or
 frequency of data sent by each logical channel.

 o Fragment a large message into smaller frames to prevent a large
 message in a logical channel occupying the physical connection and
 thus delaying messages in other logical channels.

Tamplin & Yoshino Expires January 3, 2014 [Page 32]

Internet-Draft A Multiplexing Extension for WebSockets July 2013

14. Proxies

 Proxies which do not multiplex/demultiplex are not affected by the
 presence of this extension -- they simply process WebSocket frames as
 usual. Proxies which filter or monitor WebSocket traffic will need
 to understand the multiplexing extension in order to extract the data
 from logical connections or to terminate individual logical
 connections when policy is violated. Proxies which actively
 multiplex connections or demultiplex them (for example, a mobile
 network might have a proxy which aggregates WebSocket connections at
 a single cell to conserve bandwidth to the main gateway) will require
 additional configuration (perhaps including the client) that is
 outside the scope of this document.

Tamplin & Yoshino Expires January 3, 2014 [Page 33]

Internet-Draft A Multiplexing Extension for WebSockets July 2013

15. Timeout

 When all the logical channels are closed, each endpoint MAY _Start
 the WebSocket Closing Handshake_ on the physical connection. Such
 Start the WebSocket Closing Handshake operation SHOULD be delayed
 assuming the physical connection may be reused after some idle
 period.

Tamplin & Yoshino Expires January 3, 2014 [Page 34]

Internet-Draft A Multiplexing Extension for WebSockets July 2013

16. Close the Logical Channel

 To _Close the Logical Channel_, an endpoint MUST send a DropChannel
 multiplex control block with drop reason code of 1000.

Tamplin & Yoshino Expires January 3, 2014 [Page 35]

Internet-Draft A Multiplexing Extension for WebSockets July 2013

17. Fail the Logical Channel

 To _Fail the Logical Channel_, an endpoint MUST send a DropChannel
 multiplex control block with drop reason code in the range of 3000-
 3999, tear down the logical channel, and the application instance
 that used the logical channel MUST treat this as closure of
 underlying transport.

Tamplin & Yoshino Expires January 3, 2014 [Page 36]

Internet-Draft A Multiplexing Extension for WebSockets July 2013

18. Fail the Physical Connection

 To _Fail the Physical Connection_, an endpoint MUST send a
 DropChannel multiplex control block with objective channel ID of 0
 and drop reason code in the range of 2000-2999, and then _Fail the
 WebSocket Connection_ on the physical connection with status code of
 1011.

Tamplin & Yoshino Expires January 3, 2014 [Page 37]

Internet-Draft A Multiplexing Extension for WebSockets July 2013

19. Operations and Events on Multiplexed Connection

 When an endpoint is asked to perform any operation defined in the
 WebSocket Protocol except for _Close the WebSocket Connection_ by
 some application instance, the endpoint MUST perform the operation on
 the corresponding logical channel.

 Any event on a logical channel except for _The WebSocket Connection
 is Closed_, MUST be taken as one for the corresponding application
 instance.

 When an endpoint is asked to do _Close the WebSocket Connection_ by
 some application instance, it MUST perform _Close the Logical
 Channel_ on the corresponding logical channel.

 When a DropChannel is received, or the physical connection is closed,
 it MUST be taken as _The WebSocket Connection is Closed_ event for
 the corresponding application instance(s).

 What to set to _Extension In Use_ for each multiplexed connection is
 TBD.

Tamplin & Yoshino Expires January 3, 2014 [Page 38]

Internet-Draft A Multiplexing Extension for WebSockets July 2013

20. Security Considerations

 A client MUST be prepared to receive a NewChannelSlot with huge value
 on the number of slots field.

 As noted in the Section 5.1.2, be careful in using combination of any
 compression extensions and this extension.

Tamplin & Yoshino Expires January 3, 2014 [Page 39]

Internet-Draft A Multiplexing Extension for WebSockets July 2013

21. IANA Considerations

 This specification is registering a value of the Sec-WebSocket-
 Extension header field in accordance with Section 11.4 of the
 WebSocket protocol [RFC6455] as follows:

 Extension Identifier

 mux

 Extension Common Name

 Multiplexing Extension for WebSockets

 Extension Definition

 This document

 Known Incompatible Extensions

 None

Tamplin & Yoshino Expires January 3, 2014 [Page 40]

Internet-Draft A Multiplexing Extension for WebSockets July 2013

22. References

22.1. Normative References

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119, March 1997.

 [RFC2818] Rescorla, E., "HTTP Over TLS", RFC 2818, May 2000.

 [RFC6455] Fette, I. and A. Melnikov, "The WebSocket Protocol",
 RFC 6455, December 2011.

22.2. Informative References

 [CRIME] Rizzo, J. and T. Duong, "The CRIME attack", Ekoparty 2012,
 September 2012.

Tamplin & Yoshino Expires January 3, 2014 [Page 41]

Internet-Draft A Multiplexing Extension for WebSockets July 2013

Authors’ Addresses

 John A. Tamplin
 Google, Inc.

 Email: jat@jaet.org

 Takeshi Yoshino
 Google, Inc.

 Email: tyoshino@google.com

Tamplin & Yoshino Expires January 3, 2014 [Page 42]

