
Layer 2 Virtual Private Networks O. Dornon
Internet-Draft J. Kotalwar
Intended status: Informational Alcatel-Lucent
Expires: January 17, 2013 J. Zhang
 Juniper Networks, Inc.
 V. Hemige
 Alcatel-Lucent
 July 16, 2012

 PIM Snooping over VPLS
 draft-ietf-l2vpn-vpls-pim-snooping-02

Abstract

 In Virtual Private LAN Service (VPLS), as also in IEEE Bridged
 Networks, the switches simply flood multicast traffic on all ports in
 the LAN by default. IGMP Snooping is commonly deployed to ensure
 multicast traffic is not forwarded on ports without IGMP receivers.
 The procedures and recommendations for IGMP Snooping are defined in
 [IGMP-SNOOP]. But when any protocol other than IGMP is used, the
 common practice is to simply flood multicast traffic to all ports.
 PIM-SM, PIM-SSM, PIM-BIDIR are widely deployed routing protocols.
 PIM Snooping procedures are important to restrict multicast traffic
 to only the routers interested in receiving such traffic.

 While most of the PIM Snooping procedures defined here also apply to
 IEEE Bridged Networks, VPLS demands certain special procedures due to
 the split-horizon rules that require the Provider Edge (PE) devices
 to co-operate. This document describes the procedures and
 recommendations for PIM-Snooping in VPLS to facilitate replication to
 only those ports behind which there are interested PIM routers and/or
 IGMP hosts. This document also describes procedures for PIM Proxy.
 PIM Proxy is required on PEs for VPLS Multicast to work correctly
 when Join suppression is enabled in the VPLS. PIM Proxy also helps
 scale VPLS Multicast much better than just PIM Snooping.

Requirements Language

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in [RFC2119].

Status of this Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

Dornon, et al. Expires January 17, 2013 [Page 1]

Internet-Draft l2vpn-pim-snooping July 2012

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at http://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on January 17, 2013.

Copyright Notice

 Copyright (c) 2012 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust’s Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Dornon, et al. Expires January 17, 2013 [Page 2]

Internet-Draft l2vpn-pim-snooping July 2012

Table of Contents

 1. Introduction . 5
 1.1. Assumptions . 6
 1.2. PIM Snooping and PIM Proxy Complexity 6
 1.3. Definitions . 6
 2. Multicast Traffic over VPLS 7
 2.1. Constraining of IP Multicast in a VPLS 8
 2.2. IPv6 Considerations 9
 2.3. PIM-SM (*,*,RP) Considerations 9
 2.4. PIM Packet Types to Snoop 9
 2.5. PIM Snooping vs PIM Proxy 9
 2.5.1. Differences between PIM Snooping and PIM Proxy 10
 2.5.2. PIM Control Message Latency 11
 2.5.3. When to Snoop and When to Proxy 11
 3. PIM Snooping for VPLS . 12
 3.1. General Rules for PIM Snooping in VPLS 13
 3.1.1. Snooping PIM Packets 13
 3.1.2. Preserving Assert Trigger 13
 3.2. Discovering PIM Routers 14
 3.3. PIM-SM and PIM-SSM . 15
 3.3.1. Building PIM-SM Snooping States 15
 3.3.2. Explanation for per (S,G,N) states 17
 3.3.3. Receiving (*,G) PIM-SM Join/Prune Messages 18
 3.3.4. Receiving (S,G) PIM-SM Join/Prune Messages 20
 3.3.5. Receiving (S,G,rpt) Join/Prune Messages 22
 3.3.6. Sending Join/Prune Messages Upstream 22
 3.4. Bidirectional-PIM (PIM-BIDIR) 23
 3.5. Interaction with IGMP Snooping 24
 3.6. PIM-DM . 24
 3.6.1. Building PIM-DM Snooping States 24
 3.6.2. PIM-DM Downstream Per-Port PIM(S,G,N) State Machine . 25
 3.6.3. Triggering ASSERT election in PIM-DM 25
 3.7. PIM Proxy . 25
 3.7.1. Downstream PIM Proxy behavior 26
 3.7.2. Upstream PIM Proxy behavior 26
 3.7.3. Source IP Address in Proxy PIM Join/Prune Packets . . 26
 3.8. Directly Connected Multicast Source 27
 3.9. Data Forwarding Rules 27
 3.9.1. PIM-SM Data Forwarding Rules 28
 3.9.2. PIM-BIDIR Data Forwarding Rules 29
 3.9.3. PIM-DM Data Forwarding Rules 30
 4. IANA Considerations . 31
 5. Security Considerations 31
 6. Contributers . 31
 7. Acknowledgements . 32
 8. References . 32
 8.1. Normative References 32

Dornon, et al. Expires January 17, 2013 [Page 3]

Internet-Draft l2vpn-pim-snooping July 2012

 8.2. Informative References 32
 Appendix A. PIM-BIDIR Thoughts 33
 Appendix B. Example Network Scenario 33
 B.1. Pim Snooping Example 34
 B.2. PIM Proxy Example with (S,G) / (*,G) interaction 36
 Authors’ Addresses . 39

Dornon, et al. Expires January 17, 2013 [Page 4]

Internet-Draft l2vpn-pim-snooping July 2012

1. Introduction

 In Virtual Private LAN Service (VPLS), the Provider Edge (PE) devices
 provide a logical interconnect such that Customer Edge (CE) devices
 belonging to a specific VPLS instance appear to be connected by a
 single LAN. Forwarding information base for particular VPLS instance
 is populated dynamically by source MAC address learning. This is a
 straightforward solution to support unicast traffic, with reasonable
 flooding for unicast unknown traffic. Since a VPLS provides LAN
 emulation for IEEE bridges as wells as for routers, the unicast and
 multicast traffic need to follow the same path for layer-2 protocols
 to work properly. As such, multicast traffic is treated as broadcast
 traffic and is flooded to every site in the VPLS instance. VPLS
 solutions (i.e., [VPLS-LDP] and [VPLS-BGP]) perform replication for
 multicast traffic at the ingress PE devices. As stated in the VPLS
 Multicast Requirements draft [VPLS-MCAST-REQ], there are two issues
 with VPLS Multicast today: A. Multicast traffic is replicated to non-
 member sites. B. Replication of PWs on shared physical path.

 This document solves Issue A of [VPLS-MCAST-REQ] by ensuring that IP
 multicast traffic is not forwarded to non-member sites. Issue B is
 outside the scope of this document. The different mechanisms to
 tunnel IP multicast traffic in a VPLS from the ingress PE to the
 egress PEs are discussed in[VPLS-MCAST-TREES]. The solution in this
 document when combined with the solutions proposed in the working
 group to solve Issue B will provide a complete VPLS Multicast
 solution set.

 Using IGMP/PIM Snooping in VPLS has the following advantages:

 o It improves IP Multicast bandwidth usage in the VPLS core by
 ensuring traffic is replicated only to PEs with member sites.
 Note that this is not necessarily optimum, as there can still be
 bandwidth waste if traffic from a PE to other PE(s) is not
 forwarded along a minimum cost spanning tree.

 o It prevents sending multicast traffic to non-member sites.

 Procedures for IGMP Snooping are specified in[IGMP-SNOOP]. This
 document describes the procedures for Protocol Independent Multicast
 (PIM) snooping over VPLS for efficient distribution of IP multicast
 traffic. It also describes the rules when both IGMP and PIM are
 active in a VPLS instance.

 This document also describes procedures for PIM Proxy. PIM Proxy is
 required on PEs for VPLS Multicast to work correctly when Join
 suppression is enabled in the VPLS. PIM Proxy also helps scale VPLS
 Multicast much better than just PIM Snooping.

Dornon, et al. Expires January 17, 2013 [Page 5]

Internet-Draft l2vpn-pim-snooping July 2012

1.1. Assumptions

 Since this draft describes the procedures for PIM Snooping and PIM
 Proxy, the draft assumes that the reader has a good understanding of
 the PIM protocols. The text in this draft is written in the same
 style as the PIM RFCs to help correlate the concepts and to make it
 easier to follow. In order to avoid replicating the text relating to
 PIM protocol handling here, this draft assumes that the user will
 infer such detail from the PIM RFC referenced in this document.
 Deviations in protocol handling specific to PIM Snooping and PIM
 Proxy are specified in this draft. There could be cross references
 into definitions of macros and procedures from the PIM RFCs.

1.2. PIM Snooping and PIM Proxy Complexity

 The PIM Snooping and PIM Proxy solutions described here requires a
 switch to examine and operate on only PIM Hello and PIM Join/Prune
 packets. The switch does not need to examine any other PIM packets.

 The switch does not need to have any routing tables like is required
 in PIM Multicast Routing. It knows how to forward Join/Prunes by
 looking at the Upstream Neighbor field in the Join/Prune packets.

 The switch does not need to know about Rendezvous Points (RP) and
 does not have to maintain any RP Set. All that is transparent to a
 PIM Snooping switch.

 Most of the procedures in PIM Snooping and PIM Proxy in the handling
 of PIM Hellos and PIM Join/Prune packets are very similar to that of
 a PIM Router.

 The solutions described here provide complete separation of control
 and data planes.

 A PIM Proxy solution minimizes the control plane messages received at
 CE routers by proxying one message upstream on behalf of a large
 number of downstream CEs. As such control plane messaging is very
 similar to that of a PIM Router.

1.3. Definitions

 There are several definitions referenced in this document that are
 well described in the PIM RFCs [PIM-SM], PIM-BIDIR, PIM-DM]. The
 following definitions and abbreviations are used throughout this
 document:

Dornon, et al. Expires January 17, 2013 [Page 6]

Internet-Draft l2vpn-pim-snooping July 2012

 o A port is defined as either an attachment circuit (AC) or a
 Pseudo-Wire (PW).

 o When we say a PIM message is ’received’ on a port, it means that a
 PIM Snooping switch snooped the PIM message.

 Abbreviations used in the document:

 o S: IP Address of the Multicast Source.

 o G: IP Address of the Multicast Group.

 o N: Upstream Neighbor field in a Join/Prune/Graft message.

 o Rport(N): Port on which neighbor N is learnt

 Other definitions are explained in the sections where they are
 introduced.

2. Multicast Traffic over VPLS

 In VPLS, if a PE receives a frame from an Attachment Circuit (AC)
 with no matching entry in the forwarding information base for that
 particular VPLS instance, it floods the frame to all other PEs (which
 are part of this VPLS instance) and to directly connected ACs (other
 than the one that the frame is received from). The flooding of a
 frame occurs when:

 o The destination MAC address has not been learned,

 o The destination MAC address is a broadcast address,

 o The destination MAC address is a multicast address.

 Malicious attacks (e.g., receiving unknown frames constantly) aside,
 the first situation is handled by VPLS solutions as long as
 destination MAC address can be learned. After that point on, the
 frames will not be flooded. A PE is REQUIRED to have safeguards,
 such as unknown unicast limiting and MAC table limiting, against
 malicious unknown unicast attacks.

 There is no way around flooding broadcast frames. To prevent runaway
 broadcast traffic from adversely affecting the VPLS service and the
 SP network, a PE is REQUIRED to have tools to rate limit the
 broadcast traffic as well.

 Similar to broadcast frames, multicast frames are flooded as well, as

Dornon, et al. Expires January 17, 2013 [Page 7]

Internet-Draft l2vpn-pim-snooping July 2012

 a PE cannot know where multicast members reside. Rate limiting
 multicast traffic, while possible, should be done carefully since
 several network control protocols relies on multicast. For one
 thing, layer-2 and layer-3 protocols utilize multicast for their
 operation. For instance, Bridge Protocol Data Units (BPDUs) use an
 IEEE assigned all bridges multicast MAC address, and OSPF is
 multicast to all OSPF routers multicast MAC address. If the rate-
 limiting of multicast traffic is not done properly, the customer
 network will experience instability and poor performance. For the
 other, it is not straightforward to determine the right rate limiting
 parameters for multicast.

 A VPLS solution MUST NOT affect the operation of customer layer-2
 protocols (e.g., BPDUs). Additionally, a VPLS solution MUST NOT
 affect the operation of layer-3 protocols.

 In the following section, we describe procedures to constrain the
 flooding of IP multicast traffic in a VPLS.

2.1. Constraining of IP Multicast in a VPLS

 For a PE in a VPLS (a layer-2 device) to constrain IP multicast
 traffic, it needs to be able to learn which CEs are interested in
 receiving multicast traffic for what flows.

 The most obvious solution is to snoop IP multicast control traffic at
 the PEs. Snooping as a solution to constrain multicast traffic makes
 sense under the following circumstances:

 o The CE-CE protocol the PEs snoop is a popular and widely deployed
 protocol.

 o It does not require any changes on the CEs and it should be
 completely transparent to the CEs.

 IGMP/MLD and PIM are the popular IP Multicast Routing protocols
 today. Other routing protocols such as DVMRP or MOSPF are outside
 the scope of this document.

 This document describes the guidelines for PIM Snooping and PIM Proxy
 in VPLS. The specifications in this document could be used for
 either PIM Snooping or PIM Proxy. The PIM Proxy solution is
 described in section Section 3.7. Differences that need to be
 observed while implementing one or the other and recommendations on
 which method to employ in different scenarios are noted in section
 Section 2.5. We will largely refer to PIM "Snooping" in this
 document. Unless specifically specified, the same procedures should
 apply to a Proxy solution as well.

Dornon, et al. Expires January 17, 2013 [Page 8]

Internet-Draft l2vpn-pim-snooping July 2012

 In the following sub-sections, we provide some guidelines for the
 implementation of PIM snooping in VPLS. Snooping techniques need to
 be employed on ACs at the downstream PEs. Snooping techniques can
 also be employed on PWs at the upstream PEs. This may work well for
 small to medium scale deployments. However, if there are a large
 number of VPLS instances with a large number of PEs per instances,
 then the amount of snooping required at the upstream PEs can
 overwhelm the upstream PEs.

2.2. IPv6 Considerations

 In VPLS, PEs forward Ethernet frames received from CEs and as such
 are agnostic of the layer-3 protocol used by the CEs. However, as an
 IGMP and PIM snooping switch, the PE would have to look deeper into
 the IP and IGMP/PIM packets and build snooping state based on that.
 The PIM Protocol specifications handle both IPv4 and IPv6. The
 specification for PIM Snooping in this draft can be applied to both
 IPv4 and IPv6 payloads.

2.3. PIM-SM (*,*,RP) Considerations

 This draft does not address (*,*,RP) states in the VPLS network.
 Although [PIM-SM] specifies that routers MUST support (*,*,RP)
 states, there are very few implementations that actually support it
 in actual deployments. Given the complexity of supporting (*,*,RP)
 states and knowing that there is little to no use to supporting it,
 this draft omits the specification relating to (*,*,RP) support.

2.4. PIM Packet Types to Snoop

 A PIM Snooping switch need only snoop on PIM Hellos and PIM Join/
 Prune packets. All other PIM packets can be transparently flooded
 unexamined.

2.5. PIM Snooping vs PIM Proxy

 PIM Snooping switches simply snoop on PIM packets as they are being
 forwarded in the VPLS. As such it truly provides transparent LAN
 services since no customer packets are modified or consumed or new
 packets introduced in the VPLS. It is also slightly simpler to
 implement than PIM Proxy. However for PIM Snooping to work
 correctly, it is a requirement that CE routers MUST disable Join
 suppression in the VPLS.

 Given that a large number of existing CE deployments do not support
 disabling of Join suppression and given the operational complexity
 for a provider to manage disabling of Join suppression in the VPLS,
 it becomes a difficult solution to deploy. Another disadvantage of

Dornon, et al. Expires January 17, 2013 [Page 9]

Internet-Draft l2vpn-pim-snooping July 2012

 PIM Snooping as a solution is that it does not scale as well as PIM
 Proxy. If there are a large number of CEs in a VPLS, then every CE
 will see every other CE’s Join/Prune messages.

 PIM Proxy on the PEs has the advantage that it does not require Join
 suppression to be disabled in the VPLS. Multicast as a VPLS service
 can be very easily be provided without requiring any changes on the
 CE routers. It also helps scale VPLS Multicast very well since the
 PEs intelligently forward only one Join/Prune message for a given
 flow and only to the upstream CE.

 PIM Proxy as a solution however loses the transparency argument since
 Join/Prunes could get modified or even consumed at a PE. Also, new
 packets could get introduced in the VPLS. However, this loss of
 transparency is limited to PIM Join/Prune packets. It is in the
 interest of optimizing multicast in the VPLS and helping a VPLS
 network scale much better. Data traffic will still be completely
 transparent.

2.5.1. Differences between PIM Snooping and PIM Proxy

 For PIM-SM and PIM-BIDIR, a PIM Snooping/Proxy Switch only needs to
 examine PIM Hello and Join/Prune messages. PIM Proxy for PIM-DM is
 for future study and is not currently specified in this draft.

 A proxy switch performs proxy only for the Join/Prune messages. PIM
 Hello messages are snooped by both PIM Snooping and PIM Proxy
 switches.

 Details on the PIM Proxy solution are discussed in section
 Section 3.7. This section is presented here to say that most of the
 procedures to follow (unless explicitly specified) are common to both
 PIM Snooping and PIM Proxy. Differences between a PIM Snooping
 switch and a PIM Proxy switch can be summarized as the following:

Dornon, et al. Expires January 17, 2013 [Page 10]

Internet-Draft l2vpn-pim-snooping July 2012

 +------------------------------|--------------------------------+
 | PIM Snooping | PIM Proxy |
 +==============================|================================+
1. PIM Snooping switches	1. PIM Proxy switches also
snoop Hello and Join/Prune	snoop PIM Hello messages
messages while they are	while they are transparently
transparently flooded in	flooded in the VPLS. But
the VPLS.	they consume PIM Join/Prune
	messages and do not flood
	them as is in the VPLS.
+------------------------------	--------------------------------+
2. PIM Snooping switches do	2. PIM Proxy switches may
not originate any PIM	originate new or modified
packets.	Join/Prune packets.
 +------------------------------|--------------------------------+

 Other than the above simple differences, most of the procedures are
 common to PIM Snooping and PIM Proxy. In the text to follow, we
 describe the procedures for PIM "Snooping". Unless specifically
 stated otherwise, such procedures apply to PIM Proxy as well.

2.5.2. PIM Control Message Latency

 A PIM Snooping or PIM Proxy switch snoops on PIM Hello packets while
 transparently flooding it in the VPLS. As such there is no latency
 introduced by the VPLS in the delivery of PIM Hello packets to remote
 CEs in the VPLS.

 A PIM Proxy switch consumes PIM Join/Prune packets and generates
 proxy Join/Prune packets to be sent upstream. This can result in
 additional latency for a downstream CE to receive multicast traffic
 after it has sent a Join. When a downstream CE prunes a multicast
 stream, the traffic should stop flowing to the CE with no additional
 latency introduced by the VPLS.

 A PIM Snooping switch snoops on PIM Join/Prune packets while
 transparently flooding them in the VPLS. There is no latency
 introduced by the VPLS in the delivery of PIM Join/Prune packets when
 PIM Snooping is employed.

2.5.3. When to Snoop and When to Proxy

 Explicit Tracking (ET) is enabled in a VPLS when all PIM CE Routers
 in the VPLS advertise Tracking Support in their PIM Hello messages.
 If even one does not advertise Tracking Support, then all PIM CE
 routers disable ET in the VPLS. When ET is enabled, it implies that
 Join Suppression is disabled and vice versa.

Dornon, et al. Expires January 17, 2013 [Page 11]

Internet-Draft l2vpn-pim-snooping July 2012

 PIM Snooping PEs can determine if ET is enabled or disabled in a VPLS
 by examining PIM Hellos. If ET is disabled, PIM Proxy MUST be used.
 If ET is enabled, either PIM Snooping or PIM Proxy can be used,
 unless the PIM control message latency due to proxy is a concern, in
 which case PIM Snooping SHOULD be used.

3. PIM Snooping for VPLS

 IGMP snooping procedures described in [IGMP-SNOOP] provide efficient
 delivery of IP multicast traffic in a given VPLS service when end
 stations are connected to the VPLS. However, when VPLS is offered as
 a WAN service it is likely that the CE devices are routers and would
 run PIM between them. To provide efficient IP multicasting in such
 cases, it is necessary that the PE routers offering the VPLS service
 do PIM snooping.

 PIM is a multicast routing protocol, which runs exclusively between
 routers. PIM shares many of the common characteristics of a routing
 protocol, such as discovery messages (e.g., neighbor discovery using
 Hello messages), topology information (e.g., multicast tree), and
 error detection and notification (e.g., dead timer and designated
 router election). On the other hand, PIM does not participate in any
 kind of exchange of databases, as it uses the unicast routing table
 to provide reverse path information for building multicast trees.
 There are a few variants of PIM. In [PIM-DM], multicast data is
 pushed towards the members similar to broadcast mechanism. PIM-DM
 constructs a separate delivery tree for each multicast group. As
 opposed to PIM-DM, other PIM flavors (PIM-SM [PIM-SM], PIM-SSM
 [PIM-SSM], and PIM-BIDIR [PIM-BIDIR]) invoke a pull methodology
 instead of push technique.

 PIM routers periodically exchange Hello messages to discover and
 maintain stateful sessions with neighbors. After neighbors are
 discovered, PIM routers can signal their intentions to join or prune
 specific multicast groups. This is accomplished by having downstream
 routers send an explicit Join/Prune message (for the sake of
 generalization, consider Graft messages for PIM-DM as Join messages)
 to the upstream routers. The Join/Prune message can be group
 specific (*,G) or group and source specific (S,G).

 In PIM snooping, a PE snoops on the PIM message exchanged between
 routers, and builds its multicast states.

 Based on the multicast states, it forwards IP multicast traffic
 accordingly to avoid unnecessary flooding.

 In the following sub-sections, snooping mechanisms for each variety

Dornon, et al. Expires January 17, 2013 [Page 12]

Internet-Draft l2vpn-pim-snooping July 2012

 of PIM are specified.

3.1. General Rules for PIM Snooping in VPLS

 The following rules for the correct operation of PIM snooping MUST be
 followed.

 o PIM messages and multicast data traffic forwarded by PEs MUST
 follow the split-horizon rule for mesh PWs.

 o PIM snooping states in a PE MUST be per VPLS instance.

 o PIM assert triggers MUST be preserved to the extent necessary to
 avoid sending duplicate traffic to the same PE (see
 Section 3.1.2).

3.1.1. Snooping PIM Packets

 PIM-SM snooping PEs need to snoop on just the PIM Hello and PIM Join/
 Prune messages to build its multicast states.

 o PIM-DM snooping PEs have to also snoop on PIM Graft and PIM State
 Refresh messages.

3.1.2. Preserving Assert Trigger

 In PIM-SM/DM, there are scenarios where multiple routers could be
 forwarding the same multicast traffic on a LAN. When this happens,
 using PIM Assert Election process by sending PIM Assert Messages,
 routers ensure that only the Assert Winner forwards traffic on the
 LAN. The Assert Election is a data driven event and happens only if
 a router sees traffic on the interface to which it should be
 forwarding the traffic. In the case of VPLS with snooping, two
 routers may forward the same flow at the same time but each copy may
 reach different set of PEs, and that is acceptable from the point of
 view of avoiding duplicate traffic. If the two copies may reach the
 same PE then the sending routers must be able to see each other’s
 traffic, in order to trigger Assert Election and stop duplicate
 traffic.

 To achieve that, PIM-SM Snooping MUST not only forward multicast
 traffic for an (S,G) on the ports on which they snooped Joins(S,G)/
 Joins(*,G), but also towards the upstream neighbor(s)). In other
 words, the ports on which the upstream neighbors are learnt must be
 added to the outgoing port list along with the ports on which Joins
 are snooped.

 Similarly, PIM-DM Snooping SHOULD make sure that asserts can be

Dornon, et al. Expires January 17, 2013 [Page 13]

Internet-Draft l2vpn-pim-snooping July 2012

 triggered (Section 3.6.3).

 The above logic needs to be facilitated without breaking VPLS Split
 Horizon Rules. i.e. traffic should not be forwarded on the port on
 which it was received, and traffic arriving on a PW MUST NOT be
 forwarded onto other PW(s).

3.2. Discovering PIM Routers

 A PIM Snooping PE MUST snoop on PIM Hellos received on ACs and PWs.
 i.e. the PE transparently floods the PIM Hello while snooping on it.
 PIM Hellos are used by the snooping switch to discover PIM routers
 and their characteristics.

 For each neighbor discovered by a PE, it includes an entry in the PIM
 Neighbor Database with the following fields:

 o Layer 2 encapsulation for the Router sending the PIM Hello.

 o IP Address and address family of the Router sending the PIM Hello.

 o Port (AC / PW) on which the PIM Hello was received.

 o Hello TLVs

 The PE should be able to interpret and act on Hello TLVs currently
 defined in the PIM RFCs. The TLVs of particular interest in this
 document are:

 o Hello-Hold-Time

 o Tracking Support

 o DR Priority

 Please refer to [PIM-SM] for a list of the Hello TLVs. When a PIM
 Hello is received, the PE MUST reset the neighbor-expiry- timer to
 Hello-Hold-Time. If a PE does not receive a Hello message from a
 router within Hello-Hold-Time, the PE MUST remove that neighbor from
 its PIM Neighbor Database. If a PE receives a Hello message from a
 router with Hello-Hold-Time value set to zero, the PE MUST remove
 that router from the PIM snooping state immediately.

 From the PIM Neighbor Database, a PE MUST be able to use the
 procedures defined in [PIM-SM] to identify the PIM Designated Router
 in the VPLS instance. It should also be able to determine if
 Tracking Support is active in the VPLS instance.

Dornon, et al. Expires January 17, 2013 [Page 14]

Internet-Draft l2vpn-pim-snooping July 2012

3.3. PIM-SM and PIM-SSM

 The key characteristic of PIM-SM and PIM-SSM is explicit join
 behavior. In this model, multicast traffic is only forwarded to
 locations that specifically request it. The root node of a tree is
 the Rendezvous Point (RP) in case of a shared tree (PIM-SM only) or
 the first hop router that is directly connected to the multicast
 source in the case of a shortest path tree. All the procedures
 described in this section apply to both PIM-SM and PIM-SSM, except
 for the fact that there is no (*,G) state in PIM-SSM.

3.3.1. Building PIM-SM Snooping States

 PIM-SM and PIM-SSM Snooping states are built by snooping on the PIM-
 SM Join/Prune messages received on AC/PWs.

 The downstream state machine of a PIM-SM snooping switch very closely
 resembles the downstream state machine of PIM-SM routers. The
 downstream state consists of:

 Per downstream (Port, *, G):

 o DownstreamJPState: One of { "NoInfo" (NI), "Join" (J), "Prune
 Pending" (PP) }

 Per downstream (Port, *, G, N):

 o Prune Pending Timer (PPT(N))

 o Join Expiry Timer (ET(N))

 Per downstream (Port, S, G):

 o DownstreamJPState: One of { "NoInfo" (NI), "Join" (J), "Prune
 Pending" (PP) }

 Per downstream (Port, S, G, N):

 o Prune Pending Timer (PPT(N))

 o Join Expiry Timer (ET(N))

 Per downstream (Port, S, G, rpt):

 o DownstreamJPRptState: One of { "NoInfo" (NI), "Pruned" (P), "Prune
 Pending" (PP) }

 Per downstream (Port, S, G, rpt, N):

Dornon, et al. Expires January 17, 2013 [Page 15]

Internet-Draft l2vpn-pim-snooping July 2012

 o Prune Pending Timer (PPT(N))

 o Join Expiry Timer (ET(N))

 Where S is the address of the multicast source, G is the Group
 address and N is the upstream neighbor field in the Join/Prune
 message. Notice that unlike on PIM-SM routers where PPT and ET are
 per (Interface, S, G), PIM Snooping switches have to maintain PPT and
 ET per (Port, S, G, N). The reasons for this are explained in
 section Section 3.3.2

 Apart from the above states, we define the following state
 summarization macros.

 UpstreamNeighbors(*,G): If there is one or more Join(*,G) received on
 any port with upstream neighbor N and ET(N) is active, then N is
 added to UpstreamNeighbors(*,G). This set is used to determine if a
 Join(*,G) or a Prune(*,G) with upstream neighbor N needs to be sent
 upstream.

 UpstreamNeighbors(S,G): If there is one or more Join(S,G) received on
 any port with upstream neighbor N and ET(N) is active, then N is
 added to UpstreamNeighbors(S,G). This set is used to determine if a
 Join(S,G) or a Prune(S,G) with upstream neighbor N needs to be sent
 upstream.

 UpstreamPorts(*,G): This is the set of all Rport(N) ports where N is
 in the set UpstreamNeighbors(*,G). Multicast Streams forwarded using
 a (*,G) match MUST be forwarded to these ports in addition to
 downstream ports. So UpstreamPorts(*,G) MUST be added to
 OutgoingPortList(*,G).

 UpstreamPorts(S,G): This is the set of all Rport(N) ports where N is
 in the set UpstreamNeighbors(S,G). UpstreamPorts(S,G) MUST be added
 to OutgoingPortList(S,G).

 InheritedUpstreamPorts(S,G): This is the union of UpstreamPorts(S,G)
 and UpstreamPorts(*,G).

 UpstreamPorts(S,G,rpt): If PruneDesired(S,G,rpt) becomes true, then
 this set is set to UpstreamPorts(*,G). Otherwise, this set is empty.
 UpstreamPorts(*,G) (-) UpstreamPorts(S,G,rpt) MUST be added to
 OutgoingPortList(S,G).

 UpstreamPorts(G): This set is the union of all the UpstreamPorts(S,G)
 and UpstreamPorts(*,G) for a given G. Proxy (S,G) Join/Prune and
 (*,G) Join/Prune messages MUST be sent to a subset of
 UpstreamPorts(G) as specified in section Section 3.3.6.1.

Dornon, et al. Expires January 17, 2013 [Page 16]

Internet-Draft l2vpn-pim-snooping July 2012

 PWPorts: This is the set of all PWs.

 OutgoingPortList(*,G): This is the set of all ports to which traffic
 needs to be forwarded on a (*,G) match.

 OutgoingPortList(S,G): This is the set of all ports to which traffic
 needs to be forwarded on an (S,G) match.

 See section Section 3.9 on Data Forwarding Rules for the
 specification on how OutgoingPortList is calculated.

 NumETsActive(Port,*,G): Number of (Port,*,G,N) entries that have
 Expiry Timer running. This macro keeps track of the number of
 Join(*,G)s that are received on this Port with different upstream
 neighbors.

 NumETsActive(Port,S,G): Number of (Port,S,G,N) entries that have
 Expiry Timer running. This macro keeps track of the number of
 Join(*,G)s that are received on this Port with different upstream
 neighbors.

 RpfVectorTlvs(*,G): RPF Vectors [RPF-VECTOR] are TLVs that may be
 present in received Join(*,G) messages. If present, they must be
 copied to RpfVectorTlvs(*,G).

 RpfVectorTlvs(S,G): RPF Vectors [RPF-VECTOR] are TLVs that may be
 present in received Join(S,G) messages. If present, they must be
 copied to RpfVectorTlvs(S,G).

 Since there are a few differences between the downstream state
 machines of PIM-SM Routers and PIM-SM snooping switches, we specify
 the details of the downstream state machine of PIM-SM snooping
 switches at the risk of repeating most of the text documented in
 [PIM-SM].

3.3.2. Explanation for per (S,G,N) states

 In PIM Routing protocols, states are built per (S,G). On a router,
 an (S,G) has only one RPF-Neighbor. However, a PIM Snooping switch
 does not have the Layer 3 routing information available to the
 routers in order to determine the RPF-Neighbor for a multicast flow.
 It merely discovers it by snooping the Join/Prune message. A PE
 could have snooped on two or more different Join/Prune messages for
 the same (S,G) that could have carried different Upstream-Neighbor
 fields. This could happen during transient network conditions or due
 to dual- homed sources. A PE cannot make assumptions on which one to
 pick, but instead must facilitate the CE routers decide which
 Upstream Neighbor gets elected the RPF-Neighbor. And for this

Dornon, et al. Expires January 17, 2013 [Page 17]

Internet-Draft l2vpn-pim-snooping July 2012

 purpose, the PE will have to track downstream and upstream Join/Prune
 states per (S,G,N).

3.3.3. Receiving (*,G) PIM-SM Join/Prune Messages

 A Join(*,G) or Prune(*,G) is considered "received" if the following
 conditions are met:

 o The port on which it arrived is not Rport(N) where N is the
 upstream-neighbor N of the Join/Prune(*,G), or,

 o if both RPort(N) and the arrival port are PWs, then there exists
 at least one other (*,G,Nx) or (Sx,G,Nx) state with an AC
 UpstreamPort.

 For simplicity, the case where both RPort(N) and the arrival port are
 PWs is referred to as PW-only Join/Prune in this document. The PW-
 only Join/Prune handling is so that the RPort(N) PW can be added to
 the related forwarding entries’ OutgoingPortList to trigger Assert,
 but that is only needed for those states with AC UpstreamPort. Note
 that in PW-only case, it is ok for the arrival port and RPort(N) to
 be the same. See Appendix Appendix B for examples.

 When a router receives a Join(*,G) or a Prune(*,G) with upstream
 neighbor N, it must process the message as defined in the state
 machine below. Note that the macro computations of the various
 macros resulting from this state machine transition is exactly as
 specified in the PIM-SM RFC [PIM-SM].

 We define the following per-port (*,G,N) macro to help with the state
 machine below.

Dornon, et al. Expires January 17, 2013 [Page 18]

Internet-Draft l2vpn-pim-snooping July 2012

 Figure 1 : Downstream per-port (*,G) state machine in tabular form
 +---------------++--+
 | || Previous State |
 | ++------------+--------------+------------+
 | Event ||NoInfo (NI) | Join (J) | Prune-Pend |
 +---------------++------------+--------------+------------+
Receive		-> J state	-> J state	-> J state
Join(*,G)		Action	Action	Action
		RxJoin(N)	RxJoin(N)	RxJoin(N)
+---------------++------------+--------------+------------+				
Receive		-	-> PP state	-> PP state
Prune(*,G) and			Start PPT(N)	
NumETsActive<=1				
+---------------++------------+--------------+------------+				
Receive		-	-> J state	-
Prune(*,G) and			Start PPT(N)	
NumETsActive>1				
+---------------++------------+--------------+------------+				
PPT(N) expires		-	-> J state	-> NI state
			Action	Action
			PPTExpiry(N)	PPTExpiry(N)
+---------------++------------+--------------+------------+				
ET(N) expires		-	-> NI state	-> NI state
and			Action	Action
NumETsActive<=1			ETExpiry(N)	ETExpiry(N)
+---------------++------------+--------------+------------+				
ET(N) expires		-	-> J state	-> NI state
and			Action	Action
NumETsActive>1			ETExpiry(N)	ETExpiry(N)
 +---------------++------------+--------------+------------+

 Action RxJoin(N):

 If ET(N) is not already running, then start ET(N). Otherwise
 restart ET(N). If N is not already in UpstreamNeighbors(*,G),
 then add N to UpstreamNeighbors(*,G) and trigger a Join(*,G) with
 upstream neighbor N to be forwarded upstream. If there are RPF
 Vector TLVs in the received (*,G) message and if they are
 different from the recorded RpfVectorTlvs(*,G), then copy them
 into RpfVectorTlvs(*,G).

 Action PPTExpiry(N):

 Same as Action ETExpiry(N) below, plus Send a Prune-Echo(*,G) with
 upstream-neighbor N on the downstream port.

 Action ETExpiry(N):

Dornon, et al. Expires January 17, 2013 [Page 19]

Internet-Draft l2vpn-pim-snooping July 2012

 Disable timers ET(N) and PPT(N). Delete neighbor state
 (Port,*,G,N). If there are no other (Port,*,G) states with
 NumETsActive(Port,*,G) > 0, transition DownstreamJPState to
 NoInfo. If there are no other (Port,*,G,N) state (different ports
 but for the same N), remove N from UpstreamPorts(*,G) - this also
 serves as a trigger for US FSM (JoinDesired(*,G,N) becomes FALSE).

3.3.4. Receiving (S,G) PIM-SM Join/Prune Messages

 A Join(S,G) or Prune(S,G) is considered "received" if the following
 conditions are met:

 o The port on which it arrived is not Rport(N) where N is the
 upstream-neighbor N of the Join/Prune(S,G), or,

 o if both RPort(N) and the arrival port are PWs, then there exists
 at least one other (*,G,Nx) or (S,G,Nx) state with an AC
 UpstreamPort.

 For simplicity, the case where both RPort(N) and the arrival port are
 PWs is referred to as PW-only Join/Prune in this document. The PW-
 only Join/Prune handling is so that the RPort(N) PW can be added to
 the related forwarding entries’ OutgoingPortList to trigger Assert,
 but that is only needed for those states with AC UpstreamPort. See
 Appendix Appendix B for examples.

 When a router receives a Join(S,G) or a Prune(S,G) with upstream
 neighbor N, it must process the message as defined in the state
 machine below. Note that the macro computations of the various
 macros resulting from this state machine transition is exactly as
 specified in the PIM-SM RFC [PIM-SM].

Dornon, et al. Expires January 17, 2013 [Page 20]

Internet-Draft l2vpn-pim-snooping July 2012

 Figure 2: Downstream per-port (S,G) state machine in tabular form
 +---------------++--+
 | || Previous State |
 | ++------------+--------------+------------+
 | Event ||NoInfo (NI) | Join (J) | Prune-Pend |
 +---------------++------------+--------------+------------+
Receive		-> J state	-> J state	-> J state
Join(S,G)		Action	Action	Action
		RxJoin(N)	RxJoin(N)	RxJoin(N)
+---------------++------------+--------------+------------+				
Receive		-	-> PP state	-> PP state
Prune (S,G) and			Start PPT(N)	
NumETsActive<=1				
+---------------++------------+--------------+------------+				
Receive		-	-> J state	-
Prune(S,G) and			Start PPT(N)	
 NumETsActive>1 || | | |
 +---------------++------------+--------------+------------+
PPT(N) expires		-	-> J state	-> NI state
			Action	Action
			PPTExpiry(N)	PPTExpiry(N)
+---------------++------------+--------------+------------+				
ET(N) expires		-	-> NI state	-> NI state
and			Action	Action
NumETsActive<=1			ETExpiry(N)	ETExpiry(N)
+---------------++------------+--------------+------------+				
ET(N) expires		-	-> J state	-> NI state
and			Action	Action
NumETsActive>1			ETExpiry(N)	ETExpiry(N)
 +---------------++------------+--------------+------------+

 Action RxJoin(N):

 If ET(N) is not already running, then start ET(N). Otherwise,
 restart ET(N).

 If N is not already in UpstreamNeighbors(S,G), then add N to
 UpstreamNeighbors(S,G) and trigger a Join(S,G) with upstream
 neighbor N to be forwarded upstream. If there are RPF Vector TLVs
 in the received (S,G) message and if they are different from the
 recorded RpfVectorTlvs(S,G), then copy them into
 RpfVectorTlvs(S,G).

 Action PPTExpiry(N):

 Same as Action ETExpiry(N) below, plus Send a Prune-Echo(S,G) with
 upstream-neighbor N on the downstream port.

Dornon, et al. Expires January 17, 2013 [Page 21]

Internet-Draft l2vpn-pim-snooping July 2012

 Action ETExpiry(N):

 Disable timers ET(N) and PPT(N). Delete neighbor state
 (Port,S,G,N). If there are no other (Port,S,G) states with
 NumETsActive(Port,S,G) > 0, transition DownstreamJPState to
 NoInfo. If there are no other (Port,S,G,N) state (different ports
 but for the same N), remove N from UpstreamPorts(S,G) - this also
 serves as a trigger for US FSM (JoinDesired(S,G,N) becomes FALSE).

3.3.5. Receiving (S,G,rpt) Join/Prune Messages

 A Join(S,G,rpt) or Prune(S,G,rpt) is "received" when the port on
 which it was received is not also the port on which the upstream-
 neighbor N of the Join/Prune(S,G,rpt) was learnt.

 While it is important to ensure that the (S,G) and (*,G) state
 machines allow for handling per (S,G,N) states, it is not as
 important for (S,G,rpt) states. It suffices to say that the
 downstream (S,G,rpt) state machine is the same as what is defined in
 section 4.5.4 of the PIM-SM RFC [PIM-SM].

3.3.6. Sending Join/Prune Messages Upstream

 This section applies only to a PIM Proxy Switch and not to a PIM
 Snooping Switch.

 A PIM Proxy PE MUST implement the Upstream FSM for which the
 procedures are similar to what is defined in section 4.5.6 of
 [PIM-SM]. Similar to Downstream FSM described above, the Upstream
 FSM is also per Upstream Neighbor.

 For the purposes of the Upstream FSM, a Join or Prune message with
 upstream neighbor N is "seen" on a PIM Snooping switch if the port on
 which the message was received is also Rport(N), and the port is an
 AC. The AC requirement is needed because a Join received on the
 Rport(N) PW must not suppress this PE’s Join on that PW.

 In order to correctly facilitate assert among the CE routers, such
 Join/Prunes need to sent not only towards the upstream neighbor, but
 also on certain PWs as described below.

 If RpfVectorTlvs(*,G) is not empty, then it must be encoded in a
 Join(*,G) message sent upstream.

 If RpfVectorTlvs(S,G) is not empty, then it must be encoded in a
 Join(S,G) message sent upstream.

Dornon, et al. Expires January 17, 2013 [Page 22]

Internet-Draft l2vpn-pim-snooping July 2012

3.3.6.1. Where to send Join/Prune messages

 The following rules apply, to both refresh and triggered (S,G)/(*,G)
 Join/Prune messages.

 o The upstream neighbor field N in the Join/Prune to be sent is set
 to the N in the corresponding Upstream FSM.

 o if Rport(N) is an AC, send the message to Rport(N).

 o Additionally, if OutgoingPortList(X,G,N) contains at lease one AC,
 then the message MUST be sent to at least all the PWs in
 UpstreamPorts(G) (for (*,G)) or InheritedUpstreamPorts(S,G) (for
 (S,G)). Alternatively, the message MAY be sent to all PWs.

 Sending to a subset of PWs as described above guarantees that if
 traffic (of the same flow) from two upstream routers were to reach
 this PE, then the two routers will receive from each other,
 triggering assert.

 Sending to all PWs guarantees that if two upstream routers both send
 traffic for the same flow (even if it is to different set of
 downstream PEs), then they’ll receive from each other, triggering
 assert.

3.4. Bidirectional-PIM (PIM-BIDIR)

 PIM-BIDIR is a variation of PIM-SM. The main differences between
 PIM-SM and Bidirectional-PIM are as follows:

 o There are no source-based trees, and source-specific multicast is
 not supported (i.e., no (S,G) states) in PIM- BIDIR.

 o Multicast traffic can flow up the shared tree in PIM-BIDIR.

 o To avoid forwarding loops, one router on each link is elected as
 the Designated Forwarder (DF) for each RP in PIM-BIDIR.

 The main advantage of PIM-BIDIR is that it scales well for many-to-
 many applications. However, the lack of source-based trees means
 that multicast traffic is forced to remain on the shared tree.

 As described in [PIM-BIDIR], parts of a PIM-BIDIR enabled network may
 forward traffic without exchanging Join/Prune messages, for instance
 between DF’s and the RPL.

 As the described procedures for Pim snooping rely on the presence of
 Join/Prune messages, enabling Pim snooping on PIM-BIDIR networks

Dornon, et al. Expires January 17, 2013 [Page 23]

Internet-Draft l2vpn-pim-snooping July 2012

 could break the PIM-BIDIR functionality. Deploying Pim snooping on
 PIM-BIDIR enabled networks will require some further study, some
 thoughts are gathered in Appendix A.

3.5. Interaction with IGMP Snooping

 Whenever IGMP Snooping is enabled in conjunction with PIM Snooping in
 the same VPLS instance the switch SHOULD follow these rules:

 o To maintain the list of multicast routers and ports on which they
 are attached, the switch SHOULD NOT use the rules as described in
 section 2.1.1.(1) of RFC4541 [IGMP-SNOOP] but SHOULD rely on the
 neighbors discovered by PIM Snooping . This list SHOULD then be
 used to apply the forwarding rule as described in 2.1.1.(1) of
 RFC4541 [IGMP-SNOOP].

 o If the switch supports proxy-reporting, as described in section
 2.1.1.(2) of RFC4541 [IGMP-SNOOP], all IGMP membership information
 learned on a port to which a PIM neighbor is attached SHOULD NOT
 be included in the summarized upstream report.

3.6. PIM-DM

 The characteristics of PIM-DM is flood and prune behavior. Shortest
 path trees are built as a multicast source starts transmitting.

3.6.1. Building PIM-DM Snooping States

 PIM-DM Snooping states are built by snooping on the PIM-DM Join,
 Prune, Graft and State Refresh messages received on AC/PWs and State-
 Refresh Messages sent on AC/PWs. By snooping on these PIM-DM
 messages, a PE builds the following states per (S,G,N) where S is the
 address of the multicast source, G is the Group address and N is the
 upstream neighbor to which Prunes/Grafts are sent by downstream CEs:

 Per PIM (S,G,N):

 Port PIM (S,G,N) Prune State:

 * DownstreamPState(S,G,N,Port): One of {"NoInfo" (NI), "Pruned"
 (P), "PrunePending" (PP)}

 * Prune Pending Timer (PPT)

 * Prune Timer (PT)

Dornon, et al. Expires January 17, 2013 [Page 24]

Internet-Draft l2vpn-pim-snooping July 2012

 * Upstream Port (valid if the PIM(S,G,N) Prune State is
 "Pruned").

3.6.2. PIM-DM Downstream Per-Port PIM(S,G,N) State Machine

 The downstream per-port PIM(S,G,N) state machine is as defined in
 section 4.4.2 of [PIM-DM] with a few changes relevant to PIM
 Snooping. When reading section 4.4.2 of [PIM-DM] for the purposes of
 PIM-Snooping please be aware that the downstream states are built per
 (S, G, N, Downstream-Port} in PIM-Snooping and not per {Downstream-
 Interface, S, G} as in a PIM-DM router. As noted in the previous
 section Section 3.6.1, the states (DownstreamPState) and timers (PPT
 and PT) are per (S,G,N,P).

3.6.3. Triggering ASSERT election in PIM-DM

 Since PIM-DM is a flood-and-prune protocol, traffic is flooded to all
 routers unless explicitly pruned. Since PIM-DM routers do not prune
 on non-RPF interfaces, PEs should typically not receive Prunes on
 Rport(RPF-neighbor). So the asserting routers should typically be in
 pim_oiflist(S,G). In most cases, assert election should occur
 naturally without any special handling since data traffic will be
 forwarded to the asserting routers.

 However, there are some scenarios where a prune might be received on
 a port which is also an upstream port (UP). If we prune the port
 from pim_oiflist(S,G), then it would not be possible for the
 asserting routers to determine if traffic arrived on their downstream
 port. This can be fixed by adding pim_iifs(S,G) to pim_oiflist(S,G)
 so that data traffic flows to the UP ports.

3.7. PIM Proxy

 As noted earlier, PIM Snooping will work correctly only if Join
 Suppression is disabled in the VPLS. If Join Suppression is enabled
 in the VPLS, then PEs MUST do PIM Proxy for VPLS Multicast to work
 correctly.

 A PIM Proxy switch behaves like a PIM Router by doing most of the
 functionality of a PIM Router. The complexity however is much lesser
 on a switch since many of the issues that a PIM Router has to deal
 with are not relevant on a switch. A PIM Router needs to be able to
 build and maintain RP-Sets. They also have to deal with the Register
 and Assert State Machines. There are other complexities for a PIM
 Router resulting from inter-domain multicast. A PIM Snooping or PIM
 Proxy switch can be agnostic of all of this. All that a PIM Proxy
 switch cares about is building multicast states using PIM Hellos and
 PIM Join/Prune message. As such it’s complexity is greatly reduced.

Dornon, et al. Expires January 17, 2013 [Page 25]

Internet-Draft l2vpn-pim-snooping July 2012

 Other than the procedures defined here, the rest of the procedures
 that apply to PIM Snooping apply to PIM Proxy as well.

3.7.1. Downstream PIM Proxy behavior

 Only PIM Join/Prune messages are proxied. Hellos MUST be snooped
 while being flooded in the VPLS. i.e. PIM Hellos MUST NOT be
 consumed at a PE and regenerated.

 All other PIM packet types are flooded in the VPLS without any
 processing.

 Performing only proxy of Join/Prune messages keeps the switch
 behavior very similar to that of a PIM router without introducing too
 much additional complexity. It keeps the PIM Proxy solution fairly
 simple. Since Join/Prunes are forwarded by a PE along the slow-path
 and all other PIM packet types are forwarded along the fast-path, it
 is very likely that packets forwarded along the fast-path will arrive
 "ahead" of Join/Prune packets at a CE router (note the stress on the
 fact that fast-path messages will never arrive after Join/Prunes).
 Of particular importance are Hello packets sent along the fast-path.
 We can construct a variety of scenarios resulting in out of order
 delivery of Hellos and Join/Prune messages. However, there should be
 no deviation from normal expected behavior observed at the CE router
 receiving these messages out of order.

 The other option for a PIM Proxy solution is to proxy both Hello and
 Join/Prune messages that a PE is interested in building states for.
 If Hellos are being proxied, then it becomes necessary that the PE
 proxy all other PIM packet types also. Because if Hellos are
 received after other packet types are received at a CE router, then
 bad things will happen. That means every PIM packet has to be sent
 along the slow-path. This greatly increases the complexity on the CE
 router, it is very compute intensive and does not scale well. Also,
 proxying Hellos will result in added latency to delivery of Hello
 messages to a CE and that affects multicast convergence in the VPLS.

3.7.2. Upstream PIM Proxy behavior

 Since a PIM Proxy switch consumes Join/Prune messages, it must also
 originate PIM Join/Prune messages to be sent upstream. On ACs, both
 triggered and refresh Join/Prunes are forwarded as PIM packets.

3.7.3. Source IP Address in Proxy PIM Join/Prune Packets

 The source IP address in PIM packets sent upstream SHOULD be the
 address of a PIM downstream neighbor in the corresponding join/prune
 state. The address picked MUST NOT be the upstream neighbor field to

Dornon, et al. Expires January 17, 2013 [Page 26]

Internet-Draft l2vpn-pim-snooping July 2012

 be encoded in the packet. The layer 2 encapsulation for the selected
 source IP address MUST be the encapsulation recorded in the PIM
 Neighbor database for that IP address.

 If Explicit Tracking (ET) is disabled in the VPLS, then it does not
 matter what Source IP Address is picked in the packets sent upstream
 as long as we adhere to the rule in the previous paragraph.

 If ET is enabled, it means that a CE router is interested in tracking
 every CE that wishes to join a stream. If a PE determines that ET is
 enabled, then it SHOULD use PIM Snooping procedures instead of PIM
 Proxy.

3.8. Directly Connected Multicast Source

 If there is a source in the CE network that connects directly into
 the VPLS instance, then multicast traffic from that source MUST be
 sent to all PIM routers on the VPLS instance apart from the igmp
 receivers in the VPLS. If there is already (S,G) or (*,G) snooping
 state that is formed on any PE, this will not happen per the current
 forwarding rules and guidelines. So, in order to determine if
 traffic needs to be flooded to all routers, a PE must be able to
 determine if the traffic came from a host on that LAN. There are
 three ways to address this problem:

 o The PE would have to do ARP snooping to determine if a source is
 directly connected.

 o Another option is to have configuration on all PEs to say there
 are CE sources that are directly connected to the VPLS instance
 and disallow snooping for the groups for which the source is going
 to send traffic. This way traffic from that source to those
 groups will always be flooded within the provider network.

 o A third option is to require that sources of CE multicast routers
 must appear behind a router.

3.9. Data Forwarding Rules

 First we define the rules that are common to PIM-SM, PIM-BIDIR and
 PIM-DM PEs. Forwarding rules for each protocol type is specified in
 the sub-sections.

 If there is no matching forwarding state, then the PE MAY either
 discard the packet or send it towards all the snooped PIM CE routers
 or to a configured set of ports. How this is determined is outside
 the scope of this document.

Dornon, et al. Expires January 17, 2013 [Page 27]

Internet-Draft l2vpn-pim-snooping July 2012

 The following general rules MUST be followed when forwarding
 multicast traffic in a VPLS:

 o Traffic arriving on a port MUST NOT be forwarded back onto the
 same port.

 o Due to VPLS Split-Horizon rules, traffic ingressing on a PW MUST
 NOT be forwarded to any other PW.

3.9.1. PIM-SM Data Forwarding Rules

 Per the rules in [PIM-SM] and per the additional rules specified in
 this document,

 OutgoingPortList(*,G) = immediate_olist(*,G) (+)
 UpstreamPorts(*,G) (+)
 Rport(PimDR)

 OutgoingPortList(S,G) = inherited_olist(S,G) (+)
 UpstreamPorts(S,G) (+)
 (UpstreamPorts(*,G) (-)
 UpstreamPorts(S,G,rpt)) (+)
 Rport(PimDR)

 [PIM-SM]specifies how immediate_olist(*,G) and inherited_olist(S,G)
 are built. PimDR is the IP address of the PIM DR in the VPLS.

 The PIM-SM Snooping forwarding rules are defined below in pseudocode:

Dornon, et al. Expires January 17, 2013 [Page 28]

Internet-Draft l2vpn-pim-snooping July 2012

 BEGIN
 iif is the incoming port of the multicast packet.
 S is the Source IP Address of the multicast packet.
 G is the Destination IP Address of the multicast packet.

 If there is (S,G) state on the PE
 Then
 OutgoingPortList = OutgoingPortList(S,G)
 Else if there is (*,G) state on the PE
 Then
 OutgoingPortList = OutgoingPortList(*,G)
 Else
 OutgoingPortList = UserDefinedPortList
 Endif

 If iif is an AC
 Then
 OutgoingPortList = OutgoingPortList (-) iif
 Else
 ## iif is a PW
 OutgoingPortList = OutgoingPortList (-) PWPorts
 Endif

 Forward the packet to OutgoingPortList.
 END

 First if there is (S,G) state on the PE, then the set of outgoing
 ports is OutgoingPortList(S,G).

 Otherwise if there is (*,G) state on the PE, the set of outgoing
 ports is OutgoingPortList(*,G).

 The packet is forwarded to the selected set of outgoing ports while
 observing the general rules above in section Section 3.9

3.9.2. PIM-BIDIR Data Forwarding Rules

 The PIM-BIDIR Snooping forwarding rules are defined below in
 pseudocode:

Dornon, et al. Expires January 17, 2013 [Page 29]

Internet-Draft l2vpn-pim-snooping July 2012

 BEGIN
 iif is the incoming port of the multicast packet.
 G is the Destination IP Address of the multicast packet.

 If there is forwarding state for G
 Then
 OutgoingPortList = olist(G)
 Else
 OutgoingPortList = UserDefinedPortList
 Endif

 If iif is an AC
 Then
 OutgoingPortList = OutgoingPortList (-) iif
 Else
 ## iif is a PW
 OutgoingPortList = OutgoingPortList (-) PWPorts
 Endif

 Forward the packet to OutgoingPortList.
 END

 If there is forwarding state for G, then forward the packet to
 olist(G) while observing the general rules above in section
 Section 3.9

 [PIM-BIDIR] specifies how olist(G) is contructed.

3.9.3. PIM-DM Data Forwarding Rules

 The PIM-DM Snooping data forwarding rules are defined below in
 pseudocode:

Dornon, et al. Expires January 17, 2013 [Page 30]

Internet-Draft l2vpn-pim-snooping July 2012

 BEGIN
 iif is the incoming port of the multicast packet.
 S is the Source IP Address of the multicast packet.
 G is the Destination IP Address of the multicast packet.

 If there is (S,G) state on the PE
 Then
 OutgoingPortList = olist(S,G)
 Else
 OutgoingPortList = UserDefinedPortList
 Endif

 If iif is an AC
 Then
 OutgoingPortList = OutgoingPortList (-) iif
 Else
 ## iif is a PW
 OutgoingPortList = OutgoingPortList (-) PWPorts
 Endif

 Forward the packet to OutgoingPortList.
 END

 If there is forwarding state for (S,G), then forward the packet to
 olist(S,G) while observing the general rules above in section
 Section 3.9

 [PIM-DM] specifies how olist(S,G) is contructed.

4. IANA Considerations

 This document makes no request of IANA.

 Note to RFC Editor: this section may be removed on publication as an
 RFC.

5. Security Considerations

 Security considerations provided in VPLS solution documents (i.e.,
 [VPLS-LDP] and [VPLS-BGP]) apply to this document as well.

6. Contributers

 Karl (Xiangrong) Cai and Princy Elizabeth made significant
 contributions to bring the specification to its current state,

Dornon, et al. Expires January 17, 2013 [Page 31]

Internet-Draft l2vpn-pim-snooping July 2012

 especially in the area of Join forwarding rules.

 Yetik Serbest, Ray Qiu, Suresh Boddapati co-authored earlier
 versions.

7. Acknowledgements

 Many members of the L2VPN and PIM working groups have contributed to
 and provided valuable comments and feedback to this draft, including
 Vach Kompella, Shane Amante, Sunil Khandekar, Rob Nath, Marc Lassere,
 Yuji Kamite, Yiqun Cai, Ali Sajassi, Jozef Raets, Himanshu Shah
 (Ciena), Himanshu Shah (Alcatel-Lucent).

8. References

8.1. Normative References

 [PIM-BIDIR]
 Handley, M., Kouvelas, I., Speakman, T., and L. Vicisano,
 "Bidirectional Protocol Independent Multicast (BIDIR-
 PIM)", RFC 5015, 2007.

 [PIM-DM] Adams, A., Nicholas, J., and W. Siadak, "Protocol
 Independent Multicast Version 2 - Dense Mode
 Specification", RFC 3973, 2005.

 [PIM-SM] Fenner, B., Handley, M., Holbrook, H., and I. Kouvelas,
 "Protocol Independent Multicast- Sparse Mode (PIM-SM):
 Protocol Specification (Revised)", RFC 4601, 2006.

 [PIM-SSM] Holbrook, H. and B. Cain, "Source-Specific Multicast for
 IP", RFC 4607, 2006.

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119, 1997.

 [RPF-VECTOR]
 Wijnands, I., Boers, A., and E. Rosen, "The Reverse Path
 Forwarding (RPF) Vector TLV", RFC 5496, 2009.

8.2. Informative References

 [IGMP-SNOOP]
 Christensen, M., Kimball, K., and F. Solensky,
 "Considerations for IGMP and MLD Snooping Switches",
 RFC 4541, 2006.

Dornon, et al. Expires January 17, 2013 [Page 32]

Internet-Draft l2vpn-pim-snooping July 2012

 [VPLS-BGP]
 Kompella, K. and Y. Rekhter, "Virtual Private LAN Service
 using BGP for Auto-Discovery and Signaling", RFC 4761,
 2007.

 [VPLS-LDP]
 Lasserre, M. and V. Kompella, "Virtual Private LAN
 Services using LDP Signaling", RFC 4762, 2007.

 [VPLS-MCAST-REQ]
 Kamite, Y., Wada, Y., Serbest, Y., Morin, T., and L. Fang,
 "Requirements for Multicast Support in Virtual Private LAN
 Services", RFC 5501, 2009.

 [VPLS-MCAST-TREES]
 Aggarwal, R., Kamite, Y., Fang, L., and Y. Rekhter,
 "Multicast in VPLS", draft-ietf-l2vpn-vpls-mcast-10, Work
 in Progress.

Appendix A. PIM-BIDIR Thoughts

 This section describes some guidelines that may be used to preserve
 PIM-BIDIR functionality in combination with Pim Snooping.

 In order to preserve PIM-BIDIR Pim snooping routers need to set up
 forwarding states so that :

 o on the RPL all traffic is forwarded to all Rport(N)

 o on any other interface traffic is always forwarded to the DF

 The information needed to setup these states may be obtained by :

 o determining the mapping between group(range) and RP

 o snooping and storing DF election information

 o determining where the RPL is, this could be achieved by static
 configuration, or by combining the information mentioned in
 previous bullets.

Appendix B. Example Network Scenario

 Let us consider the scenario in Figure 3.

Dornon, et al. Expires January 17, 2013 [Page 33]

Internet-Draft l2vpn-pim-snooping July 2012

 An Example Network for Triggering Assert
 /----\ +------+ AC5 +------+ +------+ AC3 +------+ /----\
 | S2 |---| CE5 |-----| PE4 |-------------| PE2 |-----| CE3 |---| S3 |
 \----/ +------+ | |\ PW24 /| | +------+ \----/
 +------+ \ / +------+ |
 | \ / | |
 | \ / | |
 | PW34\ /PW12 | |
 | \ / | /---\
 PW14 | / |PW23 | S |
 | / \ | \---/
 | / \ | |
 | / \ | |
 | / \ | |
 +------+ / \ +------+ |
 +------+ | PE1 |/ PW13 \| PE3 | +------+
 | CE1 |-----| |-------------| |-----| CE4 |
 +------+ AC1 +------+ +------+ AC4 +------+
 |
 |AC2
 +------+
 | CE2 |
 +------+

 In the examples below, JT(Port,S,G,N) is the downstream Join Expiry
 Timer on the specified Port for the (S,G) with upstream neighbor N.

B.1. Pim Snooping Example

 In the network depicted in Figure 3, S is the source of a multicast
 stream (S,G). CE1 and CE2 both have two ECMP routes to reach the
 source.
 1. CE1 Sends a Join(S,G) with Upstream Neighbor(S,G) = CE3.
 2. PE1 snoops on the Join(S,G) while flooding it in the VPLS. PE2
 and PE3 also snoop on the Join(S,G) while flooding it in the
 VPLS.

 The resulting states at the PEs is as follows:

 At PE1:
 JT(AC1,S,G,CE3) = JP_HoldTime
 UpstreamNeighbors(S,G) = { CE3 }
 UpstreamPorts(S,G) = { PW12 }
 OutgoingPortList(S,G) = { AC1, PW12 }

 At PE2:
 JT(PW12,S,G,CE3) = JP_HoldTime
 UpstreamNeighbors(S,G) = { CE3 }

Dornon, et al. Expires January 17, 2013 [Page 34]

Internet-Draft l2vpn-pim-snooping July 2012

 UpstreamPorts(S,G) = { AC3 }
 OutgoingPortList(S,G) = { PW12, AC3 }

 At PE3:
 PE3 doesn’t create a forwarding state for (S,G) because
 the Join(S,G) was received on a PW and the Upstream RPort
 is a PW too. <<<<<

 3. The multicast stream (S,G) flows along CE3 -> PE2 -> PE1 -> CE1
 4. Now CE2 sends a Join(S,G) with Upstream Neighbor(S,G) = CE4.
 5. All PEs snoop on the Join(S,G).

 The resulting states at the PEs:

 At PE1:
 JT(AC1,S,G,CE3) = active
 JT(AC2,S,G,CE4) = JP_HoldTime.
 UpstreamNeighbors(S,G) = { CE3, CE4 }
 UpstreamPorts(S,G) = { PW12, PW13 }
 OutgoingPortList(S,G) = { AC1, PW12, AC2, PW13 }

 At PE2: Note: Since PE2 already has (S,G) state, it does not
 ignore the Join(S,G) even though it received the
 Join(S,G) on a PW and the Upstream Rport is a PW. <<<<<<
 JT(PW12,S,G,CE4) = JP_HoldTime
 JT(PW12,S,G,CE3) = active
 UpstreamNeighbors(S,G) = { CE3, CE4 }
 UpstreamPorts(S,G) = { AC3, PW23 }
 OutgoingPortList(S,G) = { PW12, AC3, PW23 }

 At PE3:
 JT(PW13,S,G,CE4) = JP_HoldTime
 UpstreamNeighbors(S,G) = { CE4 }
 UpstreamPorts(S,G) = { AC4 }
 OutgoingPortList(S,G) = { PW13, AC4 }

 6. The multicast stream (S,G) flows into the VPLS from the two CEs
 CE3 and CE4. PE2 forwards the stream received from CE3 to PW23
 and PE3 forwards the stream to AC4. This facilitates the CE
 routers to trigger assert election. Let us say CE3 becomes the
 assert winner.
 7. CE3 sends an Assert message to the VPLS. The PEs flood the
 Assert message without examining it.
 8. CE4 stops sending the multicast stream to the VPLS.
 9. CE2 notices an RPF change due to Assert and sends a Prune(S,G)
 with Upstream Neighbor = CE4. CE2 also sends a Join(S,G) with
 Upstream Neighbor = CE3.
 10. All the PEs start a prune-pend timer on the ports on which

Dornon, et al. Expires January 17, 2013 [Page 35]

Internet-Draft l2vpn-pim-snooping July 2012

 they received the Prune(S,G). When the prune-pend timer expires,
 all PEs will remove the downstream (S,G,CE4) states.

 Resulting states at the PEs:

 At PE1:
 JT(AC1,S,G,CE3) = active
 UpstreamNeighbors(S,G) = { CE3 }
 UpstreamPorts(S,G) = { PW12 }
 OutgoingPortList(S,G) = { AC1, AC2, PW12 }

 At PE2:
 JT(PW12,S,G,CE3) = active
 UpstreamNeighbors(S,G) = { CE3 }
 UpstreamPorts(S,G) = { AC3 }
 OutgoingPortList(S,G) = { PW12, AC3 }

 At PE3: no (S,G) state.

 Note that at the end of the assert election, there should be no
 duplicate traffic forwarded downstream and traffic should flow only
 on the desired path. Also note that there are no unnecessary (S,G)
 states on PE3 after the assert election.

B.2. PIM Proxy Example with (S,G) / (*,G) interaction

 In the same network, let us assume CE4 is the Upstream Neighbor
 towards the RP for G.

 1. CE1 Sends a Join(S,G) with Upstream Neighbor(S,G) = CE3.
 2. PE1 consumes the Join(S,G). PE1 looks up the neighbor database
 and determines CE3 was learnt on PW12. PE1 sends a Proxy
 Join(S,G) to the resulting UpstreamPorts(G). i.e. it sends the
 proxy Join(S,G) on PW12.
 3. Likewise, PE2 consumes the Join(S,G) and sends a proxy Join(S,G)
 on AC3 with Upstream Neighbor = CE3.

 The resulting states at the PEs is as follows:

 At PE1:
 JT(AC1,S,G,CE3) = JP_HoldTime
 UpstreamNeighbors(S,G) = { CE3 }
 UpstreamPorts(S,G) = { PW12 }
 OutgoingPortList(S,G) = { AC1, PW12 }

 At PE2:
 JT(PW12,S,G,CE3) = JP_HoldTime
 UpstreamNeighbors(S,G) = { CE3 }

Dornon, et al. Expires January 17, 2013 [Page 36]

Internet-Draft l2vpn-pim-snooping July 2012

 UpstreamPorts(S,G) = { AC3 }
 OutgoingPortList(S,G) = { PW12, AC3 }

 At PE3: PE3 did not receive any PIM Join(S,G). So it has
 no (S,G) state.

 4. The multicast stream (S,G) flows along CE3 -> PE2 -> PE1 -> CE1.
 5. Now let us say CE1 sends a Join(*,G) towards CE4.
 6. PE1 consumes the Join(*,G). PE1 sends a Proxy Join(*,G) to the
 resulting UpstreamPorts(G). Since UpstreamPorts(G) now has both
 PW12 and PW13, the Join(*,G) gets sent on both PW12 and PW13.
 Note that the UpstreamPorts(S,G) and OutgoingPortList(S,G)
 inherit the corresponding (*,G) sets, but not vice versa.
remove "but not vice versa"
COMMENT : > Original "but not vice versa" applies to OutgoingPortList(S,G) only,
I assume, because of the earlier definition:

UpstreamPorts(G): This set is the union of all the
 UpstreamPorts(S,G) and UpstreamPorts(*,G) for a given G

 7. PE2 and PE3 perform a similar function. PE2 received the
 Join(*,G) on a PW and the Upstream Neighbor is also on a PW.
 Hence PE2 only adds UpstreamPorts(*,G) to OutgoingPortList(*,G)
 and not the downstream port PW12.

 At PE1:
 JT(AC1,S,G,CE3) = active
 UpstreamNeighbors(S,G) = { CE3 }
 UpstreamPorts(S,G) = { PW12, PW13 }
 OutgoingPortList(S,G) = { AC1, PW12, PW13 }

 JT(AC1,*,G,CE4) = JP_HoldTime.
 UpstreamNeighbors(*,G) = { CE4 }
 UpstreamPorts(*,G) = { PW13 }
 OutgoingPortList(*,G) = { AC1, PW13 }

 UpstreamPorts(G) = { PW12, PW13 }

 At PE2:
 JT(PW12,S,G,CE3) = active
 UpstreamNeighbors(S,G) = { CE3 }
 UpstreamPorts(S,G) = { AC3, PW23 }
 OutgoingPortList(S,G) = { PW12, AC3, PW23 }

 JT(PW12,*,G,CE4) = JP_HoldTime
 UpstreamNeighbors(*,G) = { CE4 }
 UpstreamPorts(G) = { PW23 }

Dornon, et al. Expires January 17, 2013 [Page 37]

Internet-Draft l2vpn-pim-snooping July 2012

 OutgoingPortList(*,G) = { PW23 }

 At PE3:
 JT(PW13,*,G,CE4) = JP_HoldTime
 UpstreamNeighbors(*,G) = { CE4 }
 UpstreamPorts(*,G) = { AC4 }
 OutgoingPortList(*,G) = { PW13, AC4 }

 8. The above state results in both (S,G) and (*,G) streams to be
 forwarded to AC1. The above state also results in the (S,G)
 stream to be forwarded from CE3 to CE4 resulting in an (S,G)
 assert election. Following the assert election, CE3 becomes the
 (S,G) assert winner. CE4 stops sending (S,G) stream down the
 RPT.
 9. CE1 notices an RPF change due to assert. It sends a
 Prune(S,G,rpt) with Upstream Neighbor = CE4.
 10. PE1 consumes the Prune(S,G,rpt) and forwards the
 Prune(S,G,rpt) to both PW12 and PW13. PE2 consumes the
 Prune(S,G,rpt) and updates its states. PE3 updates its states
 and forwards the Prune(S,G,rpt) on AC4.

 At PE1:
 JT(AC1,S,G,CE3) = active
 UpstreamNeighbors(S,G) = { CE3 }
 UpstreamPorts(S,G) = { PW12 }
 OutgoingPortList(S,G) = { AC1, PW12 }

 JT(AC1,*,G,CE4) = active.
 UpstreamNeighbors(*,G) = { CE4 }
 UpstreamPorts(*,G) = { PW13 }
 OutgoingPortList(*,G) = { AC1, PW13 }

 At PE2:
 JT(PW12,S,G,CE3) = active
 UpstreamNeighbors(S,G) = { CE3 }
 UpstreamPorts(*,G) = { AC3 }
 OutgoingPortList(S,G) = { PW12, AC3 }

 JT(PW12,*,G,CE4) = JP_HoldTime
 UpstreamNeighbors(*,G) = { CE4 }
 UpstreamPorts(*,G) = { PW23 }
 OutgoingPortList(*,G) = { PW23 }

 At PE3:
 JT(PW13,*,G,CE4) = JP_HoldTime
 UpstreamNeighbors(*,G) = { CE4 }
 UpstreamPorts(G) = { AC4 }
 OutgoingPortList(*,G) = { PW13, AC4 }

Dornon, et al. Expires January 17, 2013 [Page 38]

Internet-Draft l2vpn-pim-snooping July 2012

 Even in this example, at the end of the (S,G) / (*,G) assert
 election, there should be no duplicate traffic forwarded downstream
 and traffic should flow only to the desired CEs.

 Other more complex scenarios exist. This draft should addressin PIM-
 SM and the rules specified in this draft should ensure that assert is
 triggered among the CEs in all scenarios.

Authors’ Addresses

 Olivier Dornon
 Alcatel-Lucent
 50 Copernicuslaan
 Antwerp, B2018

 Email: olivier.dornon@alcatel-lucent.com

 Jayant Kotalwar
 Alcatel-Lucent
 701 East Middlefield Rd.
 Mountain View, CA 94043

 Email: jayant.kotalwar@alcatel-lucent.com

 Jeffrey Zhang
 Juniper Networks, Inc.
 10 Technology Park Drive
 Westford, MA 01886

 Email: zzhang@juniper.net

 Venu Hemige
 Alcatel-Lucent
 701 East Middlefield Rd.
 Mountain View, CA 94043

 Email: Venu.hemige@alcatel-lucent.com

Dornon, et al. Expires January 17, 2013 [Page 39]

