Models for
adaptive-streaming-aware CDNI

draft-brandenburg-cdni-has-03

IETF 84
Vancouver

July 31, 2012

Ray van Brandenburg
Francois Le Faucheur
Kent Leung

Why this draft?

* Although CDNI should be content-agnostic, HAS content
poses some unique challenges
— Very large number of (possibly distributed) files

— Session-less nature makes session-based logging difficult and chunk-
based logging bulky

— Manifest file interferes with Request Routing
— Etc...

 This draft...

— Introduces terminology
— Discusses some of the problem areas when combing HAS and CDNI
— Introduces different options for level of HAS awareness in CDNI

— Provides recommendation to WG on level of HAS awareness to
support in deliverables of current CDNI charter

Necessities vs. Optimizations

e Support for adaptive streaming in CDNI is a requirement

* First version of CDNI specs (i.e. CDNI deliverables as per
current charter) should be focused on ‘making HAS
work’

— Only those features that are absolutely necessary in order to
allow for delivery of HAS in a scalable manner

e Later iterations (after re-chartering of WG) can include
further optimizations

— Some of those are described in the draft

File Management of HAS content

Option 1.1: No HAS awareness

— ‘Do Nothing’-approach

— dCDN is unaware of relationship between chunks, forced to store chunks as individual
files.

Option 1.2: Allow single file storage of fragmented content
— Full ‘HAS-awareness’
— CDNI Metadata Interface signals type of HAS, name of manifest, etc.
— Allows dCDN to store fragmented content as single file

Option 1.3: Access correlation hint

— Add ‘Access Correlation Hint’ to CDNI Metadata of all chunks belonging to same content
collection

— Can be used by dCDN to know which files are likely to be requested after each other in
small time window

Recommendation:

— Ininitial version of CDNI Interfaces go for Option 1.1
— Option 1.2 can be considered for re-chartering after initial solution is completed

Content Acquisition of HAS content

* Option 2.1: No HAS awareness
— ‘Do Nothing’-approach

— dCDN is unaware of relationship between chunks, forced to acquire chunks as
individual files

— Increased overhead

* Option 2.2: Allow single file acquisition of fragmented content
— Full ‘HAS-awareness’
— CDNI Metadata Interface signals type of HAS, name of manifest, etc.
— Allows dCDN to acquire fragmented content as single file

e Recommendation:

— In initial version of CDNI Interfaces go for Option 2.1

— Option 2.1 can be considered for re-chartering after initial solution is
completed

Dealing with manifest files and Request Routing

* Option 3.1: No HAS awareness
— ‘Do Nothing’-approach

— Absolute URLs with Redirection can cause very significant overhead (one full CDNI
redirection process for every chunk)

— Relative URLs work, except in cases where Path Absolute Relative URLs are used
— Absolute URLs without redirection not supported

e Option 3.2: Manifest File rewriting by uCDN
— Allow uCDN to rewrite manifest file (e.g. change URLs to point to dCDN Request Router)

— Does not require changes to CDNI Interfaces. Uses existing CDNI RR Interface for
obtaining location of dCDN RR (or surrogate)

— Transparent to dCDN (no HAS awareness required)

— Can be optional feature (not mandatory for uCDNs)
* Option 3.3: Two-step Manifest File rewriting

— Also allow dCDN to rewrite manifest file

— Requires full ‘HAS-awareness’ on behalf of dCDN

— Requires changes to CDNI interfaces

Dealing with manifest files and Request Routing - 2

Option 3.1: No HAS awareness
— ‘Do Nothing’-approach
- (...)
Option 3.2: Manifest File rewriting by uCDN

— Allow uCDN to rewrite manifest file (e.g. change URLs to point to dCDN
Request Router)

- (...)
Option 3.3: Two-step Manifest File rewriting
— Also allow dCDN to rewrite manifest file

- (...)
Recommendation:
— Mandatory support for Option 3.1

— Allow Option 3.2 for uCDN that support this

— Do not support Option 3.3, but mark as candidate for possible re-chartering in
the future

Logging of HAS content

Option 4.1: Do Nothing Specific for HAS

— Per-chunk logging (chunks are individual content items)

Option 4.2: Content Collection Identifier (CCID) Approach

— Per-chunk logging (chunks are individual content items)
— CCID is distributed through Metadata Interface
— CCID is included by dCDN in log entries, facilitates log summarization at later stage

Option 4.3: Log Transport Compressions

— Log files are compressed before transportation across Logging Interface

Option 4.4: Full HAS Awareness (per-session logs)

— dCDN is fully HAS aware and creates per-session logs

Recommendation:
— Mandatory support for Option 4.1 (per-chunk logging)
— Allow Option 4.2 as an optional feature for CDNs that support this
— Optionally, common compression (e.g. gzip) can be applied to log files

URL Signing of HAS Content - 1

* Option 5.1: Do nothing Specific for HAS

CSP can only perform URL Signing for the top level manifest file. URLs embedded in the
manifest file do not change.

Lack of protection for lower level manifest files and chunks

e Option 5.2: Flexible URL Signing (CSP & uCDN)

CSP/uCDN performs flexible URL Signing (which protects the invariant portion of the
URL) for the lower level manifest files and chunk URLs.

Manifest files and chunks are protected
uCDN/dCDN & dCDN do not need to be aware of HAS content

DNS-based request routing with asymmetric keys and HTTP-based request routing for
Relative URL works

CSP & uCDN has to generate manifest files with session-based signed URLs and becomes
involved in content access authorization for every HAS session

Manifest files are not cacheable

DNS-based request routing with symmetric key may be problematic due to need for
transitive trust between CSP & uCDN and Delivery CDN

HTTP-based request routing for Absolute URL with Redirection does not work because
the URL used by Delivery CDN surrogate is unknown to the CSP & uCDN

URL Signing of HAS Content - 2

e Option 5.3: Authorization Group ID and HTTP Cookie

Authorization Group ID metadata is used to associate the related content (i.e. manifest files and

chunks). It also specifies content (e.g. regexp method) that needs to be validated by either URL
Signing or HTTP cookie.

Manifest file and chunks are protected

CDN does not need to be aware of HAS content

CSP does not need to change the manifest files

Authorization Group ID metadata is required (i.e. CDNI Metadata Interface enhancement)
Requires the use of HTTP cookie which may be considered to be not desirable or even feasible
Manifest file has to be delivered by surrogate

e Option 5.4: HAS-awareness in CDN (HTTP Cookie and Manifest)

CDN is aware of HAS content and uses URL Signing and HTTP cookie/manifest file for content access
authorization

Manifest file and chunks are protected

CSP does not need to change the manifest files
Requires full HAS awareness on part of uCDN and dCDN
Requires CDNI Interfaces extensions

Requires the use of HTTP cookie which may be considered to be not desirable or even feasible OR
requires CDN to generate or rewrite the manifest file

Manifest file has to be delivered by surrogate
10

URL Signing of HAS Content - 3

Do Nothing Flexible URL Authorization Group HAS-aware CDN

Signing (CSP / ID Metadata and (Cookie /
uCDN) HTTP Cookie Manifest)

[Top level manifest file + +/+ + +/+
(TLMF) protection

I Lower level manifest file - L/ + iy
(LLMF) and chunk protection

[1CSP creates manifest file 3 -/ + + +/+
for each HAS session

[1uCDN creates manifest file 3 +/- + +/+
for each HAS session

[1Use of HTTP cookie + +/+ - -/+
[1State maintained for + +/+ - -/ +
surrogate switchover

[CDNI metadata is required - +/+ - -/-

[1Requires HAS awareness + +/+ + -/-

[*I Manifest files are hosted - +/+ - -/-

separately from dCDN

ISurrogate delivers chunk + +/+ + +* /-

without receiving the top

level manifest file .))
[+] denotes positive property in the option

[-] denotes negative property in the option
* when cookie has state created by other surrogate that received the top level manifest file

URL Signing of HAS Content - 4

Recommendation:

— Process of elimination. “Do nothing” (#1) is not acceptable because of the lack
of protection for the bulk of HAS content. Solution should not require the use
of HTTP cookie, remove “Authorization Group ID” (#3). Also, it should not
require HAS awareness in the CDN, remove “HAS-awareness in CDN” (#4).

— Flexible URL Signing (#3) is recommended because the approach protects all
the content, does not require Downstream CDN to be aware of HAS, does not
impact CDNI interfaces, supports all different types of devices, and supports
the common cases of request routing for HAS content (i.e. DNS-based request
routing with asymmetric keys and HTTP-based request routing for Relative
URL). The requirement for CSP/Upstream CDN to manipulate the manifest file
is not considered to be a significant obstacle as long as Downstream CDN
remains unaware of HAS.

12

Other

Content Purge

— Draft does net yet include recommendation for Content Purge, but
describes two options

— Option 6.1: Do Nothing. Content Purge per chunk

— Option 6.2: Include Content Collection ID for purging of all files related
to CCID

— Recommendation: Option 6.1 mandatory, Option 6.2 optional.
Capabilities

— Include method for dCDNs to advertise whether they support optional
HAS-specific features

13

Summary

Recommendation 1: No HAS-specific File Management. dCDN
is not explicitly made aware of relationship between chunks;
each chunk is considered an independent content item

Recommendation 2: No HAS-specific Content Acquisition.
Content Acquisition on a per-chunk basis

Recommendation 3: Mandatory requirement to support per-
chunk request routing. uCDNs can optionally rewrite manifest

files to point directly to dCDN and reduce request routing
overhead

Recommendation 4: Mandatory requirement to support per-
chunk logging. Optional feature to include Content Collection
|dentifier in log entries.

Recommendation 5: Mandatory requirement to support
Flexible URL Signing 14

Next Steps

Include summary in CDNI Framework document
Align CDNI Requirements

Standardize HAS-specific elements in relevant drafts
— HAS-specific elements for logging in Logging Interface
— Content Purge in Control Interface
— Etc.

Clean up document
— Formalize recommendations
Where will we store this HAS analysis?

— move current document towards Informational RFC?
— Move to Framework as an Appendix?

15

