DHCPv4 Options for Port-Set Assignment

draft-bajko-pripaddrassign-04

draft-wu-dhc-port-set-option-00
Background

• The possible IPv4 address exhaustion in the near future

• IPv4 address sharing between end users
 – Manner 1: Carrier-grade NAT
 • NAT444, NAT64, DS-Lite
 – Manner 2: Divide full address into port sets and assign them to end users
 • “A+P” style
 • Lightweight 4over6, MAP, 4RD
DHCPv4 for port-set assignment

• Use case: lightweight 4over6
 – Per-user stateful IPv4-over-IPv6 mechanism
 • Lightweight 4over6 [draft-cui-softwire-b4-translated-ds-lite-07]
 – DHCPv4-over-IPv6 for IPv4 assignment in IPv6 net
 • draft-ietf-dhc-dhcpv4-over-ipv6-03
 – Port-set assignment
Defined options/sub-options

• For different styles of port set
• draft-wu
 – Contiguous Port Set Option
 – GMA Port Set Option
• draft-bajko
 – Port Mask Sub-Option
 – Random Port Delegation Sub-Option
Contiguous Port Set Option

- Assign a contiguous port range
- Bounded by Min & Max port number
- Format:
GMA Port Set Option

- Following the GMA Port mapping algorithm
 - Proposed in draft-ietf-softwire-map
- Port-set format:
 - Preserve well-known ports
 - A(j) cannot be 0 => preserve first $2^{(k+m)}$ ports
 - Port-set consists of scattered port ranges
 - (2^a-1) port ranges of size 2^m
 - Could be contiguous: $a=0$

```
+-----------------+-----------------+-----------------+-----------------+-----------------
| OPTION_NCON_PORT_SET | option-length   |
| PSID Offset        | PSID length     |
| PSID               |                 |
```
Port Mask Sub-Option

- Port set determined by 16-bit mask and value
- Port-set Format
 - Port-set Mask: position of the significant bits of mask (set to “1”)
 - Port-set Value: value of the significant bits (port-set ID)
 - Significant bits can be scattered in the total 16 bits
- Compose a port set with scattered port ranges
 - Could be more scattered than GMA
 - Could be contiguous: mask=11...100...0
- Preserving well-known ports: not defined
- IPv4 address assigned in the sub-option as well
Random Port Delegation Sub-Option

• Encryption function to achieve randomness
 – Input: key K, integer x as the plaintext \(\in [1024, 65535] \)
 – Output: integer y as the ciphertext \(\in [1024, 65535] \), to be the assigned port number
 – Encryption function determined in advance between C/S

• Compose a port set with randomized, scattered ports
 – \(E(K, a), E(K,a+1), \ldots, E(K, a+2047) \)

• Preserve well-known ports (0~1024)

• IPv4 address assigned in the sub-option as well

• The sub-option is encryption-algorithm-specific
More about port randomization

• Prevent Blind attacks against TCP/UDP
• First step: making the port-set non-contiguous
• More sophisticated solutions
 – 1. User randomly selects source port from the port-set
 • RFC6056
 • Algorithms need to evolve for non-contiguous port-set
 – 2. Server pre-allocates random-style port-set
 • Random Port Delegation sub-option
 • the client is forced to use random ports
 • Decryption is needed for encapsulation destination lookup logic on tunnel concentrator
Discussion on DHCP-centric issues

- **Multiple options for multiple port-set type vs. One option with multiple sub-options**
 - With multiple options, client can indicate the expected port-set type and avoid mismatch, at the cost of more option code numbers

- **IPv4 address assigned in original DHCP message vs. in port-set option**
 - Both could work
 - Use options like IP address lease time option by default vs. clarify the usage of them in this context

- **WG guidance?**
Next steps

• Merged as one document, or separated document for different options?
• WG adoption?