DHCPv4 Options for Port-Set Assignment

draft-bajko-pripaddrassign-04
draft-wu-dhc-port-set-option-00
Background

• The possible IPv4 address exhaustion in the near future

• IPv4 address sharing between end users
 – Manner 1: Carrier-grade NAT
 • NAT444, NAT64, DS-Lite
 – Manner 2: Divide full address into port sets and assign them to end users
 • “A+P” style
 • Lightweight 4over6, MAP, 4RD
DHCPv4 for port-set assignment

• Use case: lightweight 4over6
 – Per-user stateful IPv4-over-IPv6 mechanism
 • Lightweight 4over6 [draft-cui-softwire-b4-translated-ds-lite-07]
 – DHCPv4-over-IPv6 for IPv4 assignment in IPv6 net
 • draft-ietf-dhc-dhcpv4-over-ipv6-03
 – Port-set assignment in DHCPv4
Defined options/sub-options

• For different styles of port set
• draft-wu
 – Contiguous Port Set Option
 – GMA Port Set Option
• draft-bajko
 – Port Mask Sub-Option
 – Random Port Delegation Sub-Option
Contiguous Port Set Option

- Assign a contiguous port range
- Bounded by Min & Max port number
- Format:
GMA Port Set Option

• Following the GMA Port mapping algorithm
 – Proposed in draft-ietf-softwire-map
• Port-set format:

• Preserve well-known ports
 – A(j) cannot be 0 => preserve first $2^{(k+m)}$ ports
• Port-set consists of scattered port ranges
 – (2^a-1) port ranges of size 2^m
 – Could be contiguous: $a=0$
Port Mask Sub-Option

- Port set determined by 16-bit mask and value
- Port-set Format
 - Port-set Mask: position of the significant bits of mask (set to “1”)
 - Port-set Value: value of the significant bits (port-set ID)
 - Significant bits can be scattered in the total 16 bits
- Compose a port set with scattered port ranges
 - Could be more scattered than GMA
 - Could be contiguous: mask=11...100...0
- Preserving well-known ports: not defined
- IPv4 address assigned in the sub-option as well
Random Port Delegation Sub-Option

• Encryption function to achieve randomness
 – Input: key K, integer x as the plaintext $\in [1024, 65535]$
 – Output: integer y as the ciphertext $\in [1024, 65535]$, to be the assigned port number
 – Encryption function determined in advance between C/S

• Compose a port set with randomized, scattered ports
 – $E(K, a), E(K,a+1), \ldots, E(K, a+2047)$

• Preserve well-known ports (0~1024)

• IPv4 address assigned in the sub-option as well

• The sub-option is encryption-algorithm-specific

<table>
<thead>
<tr>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>0</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>+---</td>
<td>IPv4 address</td>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>+---</td>
<td>function</td>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>+---</td>
<td>starting point</td>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>+---</td>
<td>number of delegated ports</td>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>+---</td>
<td>key K</td>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>+---</td>
<td>...</td>
<td></td>
</tr>
</tbody>
</table>
More about port randomization

- Prevent Blind attacks against TCP/UDP
- First step: making the port-set non-contiguous
- More sophisticated solutions
 - 1. User randomly selects source port from the port-set
 - RFC6056
 - Algorithms need to evolve for non-contiguous port-set
 - 2. Server pre-allocates random-style port-set
 - Random Port Delegation sub-option
 - the client is forced to use random ports
 - Decryption is needed for encapsulation destination lookup logic on tunnel concentrator
Discussion on DHCP-centric issues

• *Multiple options for multiple port-set type vs. One option with multiple sub-options*
 – DHCPv4 option code precise?
 – With multiple options, client can indicate the expected port-set type and avoid mismatch
 – From the server perspective, the server controls the port-set management manner
Discussion on DHCP-centric issues

• IPv4 address assigned in original DHCP message vs. in port-set option
 – Both could work
 – If in port-set option, need to clarify the usage of address-related options like IP address lease time option in this context
 – If in original message, client that do not recognize the port-set option could misuse the whole address

• WG guidance on the two issues?
Next steps

• Merged as one document, or separated document for different options?
• WG adoption?