WebSocket multiplexing
compression and HTTP/2.0

Takeshi Yoshino
tyoshino at google dot com
HyBi WG IETF 84 Vancouver



Integration Issues

* Per-frame compression locks fragmentation
- Multiplexor needs to decompress,
re-fragment and re-compress to fit quota
- So, per-message?

* Per-frame extension data based multiplexing
interleaves messages
- Per-message compression is not applicable
after multiplexing



Handle Everything
on Per-message Basis

* |t's time to give up ...
— Using extension data on per-frame basis
— Using RSV bits on per-frame basis
— Using frame boundary information

e Let’s use
— Per-message compression
— Multiplexing by encapsulation



Per-message compression

* Define how to compress “message”

* Friendly to multiplexing and intermediaries

— Compressed messages are still safe to be re-
fragmented

e Diff from the WG item is a little
— draft-tyoshino-hybi-permessage-compression-00



http://tools.ietf.org/rfcdiff?url1=draft-ietf-hybi-websocket-perframe-compression-04.txt&url2=draft-tyoshino-hybi-permessage-compression-00

Multiplexing by Encapsulation

* Changed on -03

* Encapsulate a frame into a binary message
with channel ID
— Only 1 byte additional overhead

* Friendly to intermediaries and post-mux
compression
— Encapsulating msgs are safe to be re-fragmented

— Control frames can be inserted without
interpreting multiplexing



All the information of a message

Multiplexor (re-)fragments it according to quota

Body0O Bodyl Body2 Body3

Encapsulate the chunked bodies into messages

ChID F RSV Opcode BodyO

—— |

i OpcodeM Len Mask Payload data

000 Binary

F




Other Update

* Flow control

— Pre-handshake quota
— NewChannelSlot: AddChannelRequest throttling

* Compression
— Decoupled compression algorithm and framing
— Simple negotiation by parameter echo back



Multiplexing TODO

* Quota

— 1 byte penalty / message
— Spend quota for control frames

* Define multiplex error codes

* Define how to fallback to another physical
connection



Can HTTP be Layered over
WebSocket multiplexing?

From SPDY, incorporate
— header encoding for efficient HTTP transfer
— “:scheme” header for protocol switching

Unmask when safe

ID space separation for server initiated stream
Simplify number encodings

Priority header



