Client-aided Congestion
Management for TCP

Yuchung Cheng

Andreas Terzis, Matt Mathis, Nandita Dukkipati



Motivation: TCP throttles app performance

e Apps today use lots connections
o Even with intelligent ADF multiplexing, e.g., SPDY
o Persistent connection is common practice

e Every new connection has to (re)discover the network
o ~90% Google HTTP responses delivered in initial

http:/u . jhu . edu 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4 2.6 2.8 3.0 3.2 3.4 3.6 3.8 4.0 4.2 4.4 4.6

. W . jhu.edu

www . jhu .edu

. Www. jhu.edu

www . jhu .edu

. www . jhu.edu

www . jhu .edu

. webl. johnshopkins.edu

. ajax.googleapis.com

. www.google-analytics.com
B10. ssl.gstatic.com

I"r\lllll

0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4 2.6 2.8 3.0 3.2 3.4 3.6 3.8 4.0 4.2 4.4 4.6

CPU Utilization

BandwidthIn (0 - 2,156 Kbps) T / A JI N T

html Jjs css text image flash other




A smart (or not-so-dumb) transport should ...

e Share network states among connections
o Past and current active ones
o Save or amortize reprobing time, e.g., slowstart

e A congestion manager (CM) on top of connections, not
iInside connections
o New connection starts fast (as if it's never been
disconnected)
o Should recover fast and avoid timeout at all cost
o N connections are as good as 1
m Disincentivize parallel connections



Sender-side CM approach

e Theory and practice
o RFC 2140 - TCP Ctrl Block Sharing by J. Touch '97

o Congestion Manager by H. Balakrishnan, SIGCOMM '98
o Ensemble-TCP by L. Eggert, CCR '00
o SCTP,'00
o Structured Stream Transport by B. Ford, SIGCOMM '07
o Multi-path TCP

e Pros

o [Easy: sender traditionally holds all CC states
o Fast deployment: maybe one side change only

e Cons
o Scale: connections to same dst must hit same (physical) host
m Difficult with large server farm load-balancing
m Need big cache for the ever-growing Internet
o Fragile: many devices/paths behind one client IP due to NAT



Can the client help?

e The client is the hub of jits connections
o Naturally the place for caching and sharing
o Scales well
o NAT is not a problem

e The client often knows better about the bottleneck: last-hop
o Link properties: wired, wifi, or cellular
o Link rate: edge vs 3G
o Link failure and recovery
o Dormant or active

e E.g., why RTO backoff then slow-start when a client can hint the sender
the broken cellular link has recovered



Great Snipe: a client-based

congestion management

e Anew TCP CC framework
o Not a new congestion control
algorithm

Congestion
Manager

e Move congestion control to the client
o Connections on the same path share

one cwnd
m also RTT, loss rate, reordering,
etc
o Network properties cached at the
client Incoming ‘ ‘ Outgoing
o Use options for signalling Data ACKs

e Server handles e2e reliability
o Detect and recover losses



Client-based congestion control

e Client as data receiver Client Server
o Client maintains size of congestion
window (cwnd) SYN
o Client passes cwnd to sender in ACKs SYN/ACK
o Sender limits # of outstanding packets to /
cwnd
e Benefit m‘
o Allows cwnd caching and reuse cwnd:4

e Client as data source
o Same as TCP today

!




Implementing standard AIMD

e Connections on the same path share one cwnd (acwnd)

e On startup
o Slow start with W10 if no prior history
o cwnd = acwnd / N otherwise

e Onlosses
o Server performs traditional loss recovery and informs client
o acwnd = ssthresh
m Reduce once across multiple losses or connections
o acwnd =1
m If nothing received from the same dst for last RTO

e After cwnd reduction
o acwnd +=1 per RTT

e Upon completion
o acwnd remains same



Research issues / opportunities

e A pure client-based maybe overkill
o What if client just guides the server somehow

e Sender announces the backlog to allow better acwnd allocation?

e Track one way delay (OWD)
o New delay-based congestion control?

e Co-exist with traditional TCP and other protocols
o E.g., interactive or real-time protocols

e Detect shared bottlenecks among different paths
e Reusing / sharing other states, e.g., loss rates, reorderig, etc

e Energy efficiency



Conclusion

e Congestion control should be on top of individual logic connections

e Server-based congestion manager has practical scale issue
o Client may offer interesting opportunities to improve CC today!
o Often knows the network better
o Naturally the sharing point
o Scale well

e Great Snipe: move CC to client and on top of indiv. connections
o Still in early development stage
o Will release to the public for testing like Laminar

e Feedback & ideas welcome! ycheng@google.com



