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Motivation: TCP throttles app performance

e Apps today use lots connections
o Even with intelligent ADF multiplexing, e.g., SPDY
o Persistent connection is common practice

e Every new connection has to (re)discover the network
o ~90% Google HTTP responses delivered in initial
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A smart (or not-so-dumb) transport should ...

e Share network states among connections
o Past and current active ones
o Save or amortize reprobing time, e.g., slowstart

e A congestion manager (CM) on top of connections, not
iInside connections
o New connection starts fast (as if it's never been
disconnected)
o Should recover fast and avoid timeout at all cost
o N connections are as good as 1
m Disincentivize parallel connections



Sender-side CM approach

e Theory and practice
o RFC 2140 - TCP Ctrl Block Sharing by J. Touch '97

o Congestion Manager by H. Balakrishnan, SIGCOMM '98
o Ensemble-TCP by L. Eggert, CCR '00
o SCTP,'00
o Structured Stream Transport by B. Ford, SIGCOMM '07
o Multi-path TCP

e Pros

o [Easy: sender traditionally holds all CC states
o Fast deployment: maybe one side change only

e Cons
o Scale: connections to same dst must hit same (physical) host
m Difficult with large server farm load-balancing
m Need big cache for the ever-growing Internet
o Fragile: many devices/paths behind one client IP due to NAT



Can the client help?

e The client is the hub of jits connections
o Naturally the place for caching and sharing
o Scales well
o NAT is not a problem

e The client often knows better about the bottleneck: last-hop
o Link properties: wired, wifi, or cellular
o Link rate: edge vs 3G
o Link failure and recovery
o Dormant or active

e E.g., why RTO backoff then slow-start when a client can hint the sender
the broken cellular link has recovered



Great Snipe: a client-based

congestion management

e Anew TCP CC framework
o Not a new congestion control
algorithm

Congestion
Manager

e Move congestion control to the client
o Connections on the same path share

one cwnd
m also RTT, loss rate, reordering,
etc
o Network properties cached at the
client Incoming ‘ ‘ Outgoing
o Use options for signalling Data ACKs

e Server handles e2e reliability
o Detect and recover losses



Client-based congestion control

e Client as data receiver Client Server
o Client maintains size of congestion
window (cwnd) SYN
o Client passes cwnd to sender in ACKs SYN/ACK
o Sender limits # of outstanding packets to /
cwnd
e Benefit m‘
o Allows cwnd caching and reuse cwnd:4

e Client as data source
o Same as TCP today

!




Implementing standard AIMD

e Connections on the same path share one cwnd (acwnd)

e On startup
o Slow start with W10 if no prior history
o cwnd = acwnd / N otherwise

e Onlosses
o Server performs traditional loss recovery and informs client
o acwnd = ssthresh
m Reduce once across multiple losses or connections
o acwnd =1
m If nothing received from the same dst for last RTO

e After cwnd reduction
o acwnd +=1 per RTT

e Upon completion
o acwnd remains same



Research issues / opportunities

e A pure client-based maybe overkill
o What if client just guides the server somehow

e Sender announces the backlog to allow better acwnd allocation?

e Track one way delay (OWD)
o New delay-based congestion control?

e Co-exist with traditional TCP and other protocols
o E.g., interactive or real-time protocols

e Detect shared bottlenecks among different paths
e Reusing / sharing other states, e.g., loss rates, reorderig, etc

e Energy efficiency



Conclusion

e Congestion control should be on top of individual logic connections

e Server-based congestion manager has practical scale issue
o Client may offer interesting opportunities to improve CC today!
o Often knows the network better
o Naturally the sharing point
o Scale well

e Great Snipe: move CC to client and on top of indiv. connections
o Still in early development stage
o Will release to the public for testing like Laminar

e Feedback & ideas welcome! ycheng@google.com



