
Client-aided Congestion 
Management for TCP

Yuchung Cheng

Andreas Terzis, Matt Mathis, Nandita Dukkipati



● Apps today use lots connections
○ Even with intelligent ADF multiplexing, e.g., SPDY
○ Persistent connection is common practice

● Every new connection has to (re)discover the network 
○ ~90% Google HTTP responses delivered in initial 

TCP slow start
○ on average a connection is used for 3 requests only

Motivation: TCP throttles app performance



A smart (or not-so-dumb) transport should ...

● Share network states among connections
○ Past and current active ones
○ Save or amortize reprobing time, e.g., slowstart

● A congestion manager (CM) on top of connections, not 
inside connections
○ New connection starts fast (as if it's never been 

disconnected)
○ Should recover fast and avoid timeout at all cost
○ N connections are as good as 1

■ Disincentivize parallel connections 



Sender-side CM approach

● Theory and practice
○ RFC 2140 - TCP Ctrl Block Sharing by J. Touch '97
○ Congestion Manager by H. Balakrishnan, SIGCOMM '98
○ Ensemble-TCP by L. Eggert, CCR '00
○ SCTP, '00
○ Structured Stream Transport by B. Ford, SIGCOMM '07
○ Multi-path TCP

● Pros
○ Easy: sender traditionally holds all CC states
○ Fast deployment: maybe one side change only

● Cons
○ Scale: connections to same dst must hit same (physical) host

■ Difficult with large server farm load-balancing
■ Need big cache for the ever-growing Internet

○ Fragile: many devices/paths behind one client IP due to NAT



Can the client help?
● The client is the hub of its connections

○ Naturally the place for caching and sharing
○ Scales well
○ NAT is not a problem

● The client often knows better about the bottleneck: last-hop
○ Link properties: wired, wifi, or cellular
○ Link rate: edge vs 3G
○ Link failure and recovery
○ Dormant or active 

● E.g., why RTO backoff then slow-start when a client can hint the sender 
the broken cellular link has recovered



Great Snipe: a client-based 
congestion management
● A new TCP CC framework

○ Not a new congestion control 
algorithm

● Move congestion control to the client
○ Connections on the same path share 

one cwnd
■ also RTT, loss rate, reordering, 

etc
○ Network properties cached at the 

client
○ Use options for signalling

● Server handles e2e reliability
○ Detect and recover losses

Congestion
Manager

F1

Flow 
Stats

Client

Incoming
Data

F2 Fn

Query/
Reply

Outgoing
ACKs



Client-based congestion control

● Client as data receiver
○ Client maintains size of congestion 

window (cwnd)
○ Client passes cwnd to sender in ACKs
○ Sender limits # of outstanding packets to 

cwnd
● Benefit

○ Allows cwnd caching and reuse

● Client as data source
○ Same as TCP today

SYN

SYN/ACK

Client Server

ACK 
cwnd:4



Implementing standard AIMD
● Connections on the same path share one cwnd (acwnd)

● On startup
○ Slow start with IW10 if no prior history
○ cwnd = acwnd / N otherwise 

● On losses
○ Server performs traditional loss recovery and informs client
○ acwnd = ssthresh

■ Reduce once across multiple losses or connections
○ acwnd = 1

■ If nothing received from the same dst for last RTO

● After cwnd reduction
○ acwnd += 1 per RTT

● Upon completion
○ acwnd remains same



Research issues / opportunities
● A pure client-based maybe overkill

○ What if client just guides the server somehow

● Sender announces the backlog to allow better acwnd allocation?

● Track one way delay (OWD)
○ New delay-based congestion control?

● Co-exist with traditional TCP and other protocols
○ E.g., interactive or real-time protocols

● Detect shared bottlenecks among different paths

● Reusing / sharing other states, e.g., loss rates, reorderig, etc

● Energy efficiency



Conclusion

● Congestion control should be on top of individual logic connections

● Server-based congestion manager has practical scale issue
○ Client may offer interesting opportunities to improve CC today!
○ Often knows the network better
○ Naturally the sharing point
○ Scale well

● Great Snipe: move CC to client and on top of indiv. connections
○ Still in early development stage
○ Will release to the public for testing like Laminar

● Feedback & ideas welcome! ycheng@google.com


