Scope

- Describe a new scalable name resolution and Distributed Hash Table (DHT) based routing approach for Information-Centric Networking (ICN)
 - Get technical feedback from ICNRG WG experts
 - Consider these techniques for potential inclusion in ICNRG WG Survey deliverable
Our Approach

- A name aggregation scheme: the prefix + the digest of suffixes
 - *Digest* is generated by Bloom filters
 - Reduce the size and update overhead of name resolution tables
 - Mitigate the suffix hole problem in traditional prefix-based aggregation.
 - Also propose to use *type-length-value* (TLV) coding for names

- Scalable Multi-level Virtual Distributed Hash Table (SMVDHT): A scalable name resolution and routing framework
 - Multi-level virtual DHTs with name aggregation
 - Constructed by exploiting the underlying intra- and inter-domain IP routing protocols
 - Multi-level DHT-based name resolution is an integrated part of routing and forwarding.
 - Improve scalability and deployability
Proposed Aggregation Scheme (1)

- **Prefix+Digest Aggregation**: publish the prefix and the digest of suffixes [3], [4]
 - Bloom filters are used to generate the digest from the suffixes of the aggregated object names.

- A Content Router (CR) announces
 - "the content objects with this prefix and digest value of the suffixes can be reached via me."
 - more accurate information
 - other CRs only need to maintain one routing state per announced prefix

- Can be used for flat and hierarchical names
Proposed Aggregation Scheme (2)

- Flat names: N objects, $P:L_i$ ($i=1, 2, \ldots N$)
 - Advertise a summary name ($sOID$), $P:\text{digest}(L)$,
 \[
 \text{digest}(L) = \text{Bloom-Filter}\{L_1, \ldots L_N\}.
 \]

- Hierarchical names: N objects with
 - /example.com/movies/titles/segmentations
 - /example.com/movies/digest(titles/segmentations)
 - /example.com/digest(categories/titles/segmentations)

- Control aggregation degree based on the content object popularity or the distance to the content location
 - Balance between needed resources and routing information compression.
 - Adjust the prefix size, i.e. the number of non-aggregated elements or
 - Control # of aggregated elements that are added to a digest

- Relieve the suffix hole problem
 - while reducing the size and update overhead of name routing tables
SMVDHT (1)

- A name resolution layer on top of the IP layer

- A CR runs both IP routing and SMVDHT name resolution protocols,
- ICN services co-exist with other IP services such as traditional host-to-host communications.

SMVDHT router model

<table>
<thead>
<tr>
<th>Payload</th>
<th>OID header</th>
<th>IP Header</th>
</tr>
</thead>
</table>

persistent transient
SMVDHT (2)

- Multi-level virtual DHTs mapped to the Internet hierarchy
 - No change to the current Internet hierarchy infrastructure as well as the relationship between enterprise domains and ISPs => simplifies deployment.

- Conventional OSPF and BGP are used for IP routing with certain extensions, e.g. a router can advertise its name resolution capability in its IP routing dissemination.
- A host or a normal IP router can connect to an SMVDHT router as a client.

- Aggregation based on the content popularity and VDHT level.
References

Backup Slides
Introduction

- Information-Centric Networking (ICN)
 - decouples identity from location at the networking level
 - retrieves an information object by its name (identifier), not by its storage location (IP address)

- Address limitations and inefficiency of IP networks
 - Content distribution, Mobility, Multi-homing, etc.

- Challenges:
 - Scalability
 - At least handle 10^{12} objects even based on the current web size
 - Increase by several orders of magnitudes considering sensor data, vehicular, Internet of things
 - Dynamic locations due to caching
 - Deployability
 - IP networks would not go away
 - ICN => next-gen CDN?
 - Built-in storage and computing power in network elements
 - No need for dedicated cache servers, proxies
Naming

- Naming scheme is critical in ICN
 - Used to identify, discover and retrieve content
 - Affect routing, scalability, and content security
- A content object name or ID (OID)
 - Uniqueness
 - globally unique to identify an object
 - Persistence
 - Independent of location and administrative domain
 - remain valid as long as the underlying object itself is available and not changed.
 - Trustworthiness
 - Secure the content rather than the communication path
 - End users and network elements should be able to authenticate the content
 - Binding between the user-friendly name and its corresponding ICN OID, and binding between the OID and content data
 - Scalability
 - Certain name aggregation
Existing Naming Schemes

- **Flat OID [1]**
 - P:L
 - P = hash of a public key of content owner/naming authority
 - L = a flat label or hash of the content data
 - Self-certifying
 - Difficult to aggregate
 - Need an external mechanism to map between user-friendly name and flat OID.

- **Hierarchical OID [2]**
 - Similar to binary encoded URL
 - /example.com/movies/title/format/segmentation
 - mapping between user-friendly name and corresponding ICN OID
 - But need mapping between OID and data (public key to authenticate data)

- **Aggregation to improve scalability**
Prefix-Based Aggregation

- Hierarchical names with prefix-based aggregation (CCN) [2]
 - aggregate routing entries for the hierarchical OIDs with a common prefix
 - `/example.com/movies/…./….`
 - If all the content objects with a prefix of “/example.com/movies” stored in a node,
 - a single route announcement
 - maintain a single routing state for these objects in content routers

- Some issues with prefix-based aggregation
 - A caching node or content router (CR) may not have all the content objects with a given prefix.
 - If the prefix-based aggregation is used to reduce routing states and update overhead, a lot of information will be lost. Router has to advertise:
 - “some of the content objects with this prefix (/example.com/movies) may be reached via me.”
 - suffix hole
 - uncertainty in locating a particular content object and reduce routing efficiency
 - How to aggregate non-structured flat names?
TLV-Structured Naming Scheme

- Type-Length-Value (TLV) Encoded OID [4]
 - consist of a set of variable-size information elements (IE), each IE encoded as a TLV
 - E.g. organizationTLV-categoryTLV-titleTLV-segmentationTLV
 - The network imposes no restrictions to the OID assignment except the TLV structure
 - CRs do not have to know the meaning of types and values except certain “well-known” types.
 - use the length field to parse the TLV elements and treats the whole element as a binary number in publishing and routing

- Why:
 - Flexibility: Hierarchical or peer relationships
 - Can define “well-known” types, e.g. digest TLVs, signature TLVs
 - Extensibility: sub-TLVs
 - URLs or DNS names have their traditional semantics, somehow related to the location, e.g. example.com/video/WidgetA.mpg
 - the name becomes misleading if the administrative domain or location of the object is changed.
Aggregation

- To address suffix hole problem, use prefix TLVs + digest TLVs
 - apply Bloom filters on each column of aggregated TLV elements to generate digest elements.
 - a routing advertisement can express more accurate information
Integration of Name Resolution and IP Routing

- Content Publishing Techniques: flooding or DHT
 - Each has its pros and cons.
- ICN is different from P2P
 - Infrastructure nodes relatively stable, but content locations change frequently due to cache replacements
- IP routing (flooding) provides infrastructure topology
 - help design more scalable and efficient name resolution mechanisms and improve deployability
- Build scalable multi-level virtual one-hop DHTs (SMVDHT) using IP routing [3]
 - Simplified network management and more efficient than conventional hierarchical DHTs such as Chord [5] and Canon [6]
 - No need for DHT bootstrapping and maintenance (IP does the job)
 - Corresponds to the Internet hierarchy and optimize forwarding path
- Name resolution is an integral part of routing and forwarding
Name Resolution and Routing Procedures

- Integrated name resolution and routing protocol: delegated CRs perform local look-up and forwarding decision in hop-by-hop.

- A content request is forwarded to the best or closest host(s) of the requested object by a set of delegated CRs.

- A response carrying the content data or an instruction to establish the content retrieval session is forwarded back to the requester along the same shortest path as the request travels.

- En-route caching can be performed by intermediate CRs.
Summary

• Scalability and deployability are critical
• Need to work/integrate with IP, not to replace IP
• Better aggregation:
 ● prefix + digest of suffix
• SMVDHT:
 ● exploit IP routing for efficient and scalable name resolution
Some More Details
CR Forwarding Process (1)

- To resolve a request to a publishing node, there should be an entry match between the requested OID and a published sOID,
 - the corresponding prefix should be exactly the same
 - the digest in the sOID should give a positive match to indicate that the corresponding suffix element in the requested OID is likely to be present.

- With Bloom filters, false positives are possible, but false negatives are not.
 - the error probability can be controlled
 - designing appropriate filters
 - limiting the number of elements that are added to a digest.
Given a filter, a publishing CR can flexibly control the aggregation degree based on the popularity of the content objects or the distance to the content location:
- e.g. no aggregation performed for the content objects residing in the local network domain.
- a domain gateway router publishes the summary OIDs of its content objects to outside domains.
- the number of suffix elements added to a digest can be limited to control the error probability.
- When the number of elements exceeds the limit, the elements are divided into groups.
 - Each group generates a digest.

Balance between the network resources needed for maintaining routing states and the false positive probability.

Mitigate the suffix-hole problem while achieving good routing scalability.

One learns from the sOID that the requests for the content objects with this prefix and digest may be served by this domain.
Bloom Filter Performance

- False positive probability p_f as a function of the number of aggregated elements n in the digest and the filter size m, assuming an optimal value of k is used.

- Design Bloom filters to meet the requirements.
Bloom-Filter Aggregation vs. Prefix-Based Aggregation

- Routing resolution error probabilities of Bloom-filter and prefix-based aggregations

- Bloom filter aggregation greatly outperforms the conventional prefix-based aggregation

- \(n = \) # of elements added to a digest
- \(u = \) total # of potential elements
- \(r = n/u \)