IKE over TCP

draft-nir-ipsecme-ike-tcp

Y. Nir
Why?

- A few months ago we started getting reports from some of our customers
- IKE had stopped working
- Turns out that the larger IKE packets were not making it to the other side
 - Packets #5 and #6 in IKEv1 Main Mode
 - Both packets of IKE_AUTH in IKEv2
- The culprit turned out to be the ISP. They were dropping all fragments
Why?

• The reports seem to be coming from SE Asia and from Australia, where IPv4 is becoming scarce, and CGNs are being deployed.

• This is prohibited by RFCs, including the CGN draft, but it's happening anyway.

• Regardless of the reason, it looks like we can no longer assume that the Internet will carry any size UDP datagram that we throw at it.

• We need a way to avoid fragmentation
This has happened before

- We have run into this issue before
- In the late '90s and early '00s, when remote access was just starting to get deployed, we have already had the issue of middleboxes dropping fragments
- At the time it was home routers that were broken. This time it's the ISPs.
This has happened before

- At the time, we added a new transport for IKE: IKE over TCP
- This has worked fine for remote access.
- We tried to bring it to the IETF before
- We got the “your customers should buy better routers” response
 - Even got the “TCP? No, SCTP is better” response
What's Changed?

- It's no longer bargain basement home routers
- With more CGNs, there may be more of this at the ISPs.
- While you might be able to get yourself whitelisted with your own ISP, it gets much harder when it's some other ISP down the line.
Other Solutions

• One of our competitors has added a fragmentation layer within IKE, so large IKE messages get sent in several packets and re-assembled on the other side.

• IMO this is exceedingly complicated, and if we do that then IKE has:
 • A segmentation layer
 • exponential back-off of retransmissions
 • A transmission window (in IKEv2) initialized to 1

• Those who would not use TCP are doomed to re-create it.
Other Solutions

• We could try to name & shame ISPs into not dropping fragments
 • or making exceptions for UDP ports 500 and 4500.

• Make packets smaller:
 • Hash & URL
 • Move to PSK
 • Configuration to avoid certificate chains
 – But everybody's going to 2048-bit certs
 • Don't send CRLs.
IKE over TCP

- This solution is rather lightweight. IKE messages already have a length field, so it's easy to get them in a stream protocol like TCP.
- We can use port 500, as it's already allocated to “isakmp”.
- It can move arbitrarily large messages
- We have over a decade of operational experience running it with thousands of peers.
IKE over TCP

• Possible policies:
 • Send only IKE_AUTH over TCP, everything else over UDP
 • Send the whole Initial+IKE_AUTH over TCP, everything else over UDP
 • Send every IKE request over TCP
Open Issues

- Do we want to also specify IKEv1?
- Should retransmissions in TCP be forbidden, or just discouraged
- Liveness checks, should they be sent over TCP?
- Is it OK to send the Initial exchange over TCP?
 - That means discovery through a 3-way handshake
 - Alternatively we could have discovery through a Notify payload in the Initial request and response
 - Which are sent over UDP