Use cases + JSMS

Richard Barnes



Use Cases Reminder

JSON Web Token
— Mainly signing, and encyption
— Compact, URL-safe serialization
XMPP end to end security
— Mainly encryption, and signing
— Separation of wrapped keys from encrypted content
— Baseb64 = base64ur]
ALTO[?]: Signing over JSON objects
WebCrypto[?]: Cryptographic structures that go over
the wire (public keys, wrapped keys)

Other suggestions welcome!



JWT Security Token Use Case [MJ]

 URL-safe representation required
— Tokens may be used as URI query parameters

* Compactness required
— Some browsers limit URLs to 2048 chars or less
* Simplicity required

— Goal is widespread adoption



JSMS

* Written to highlight some design choices in
JWH*
— In particular, several that differ from CMS

* Simplified profile of CMS, encoded in JSON

— No signed/authenticated attributes
— No password-based key wrapping
— Lots of optional features stripped

* Crypto-compatible with (a profile of) CMS



JSMS Example (Encrypted)

"version": 1,
"type": "encrypted",
"content": "OnkXCLOVxM20NJOsDCwASLTODIMVZQE=",
"algorithm": {
"name": "aesl28-ccm",
"n": "LTR8s7KKbd1lQlQ==",
"m": 8
by
"keys": [{
"type": "transport",
"algorithm": "rsaes-oaep",
"encryptedKey": "AbAx...mgOKJv-"
"recipientKey": {
"type": "rsa",
"n": "AfWGin...yq7 v.c ",
"e": "AQAB",

H]



JSMS Example (Authenticated)

"version": 1,

"type": "authenticated",
"algorithm": "hs256",

"content": "QXROYWNrIGFOIGRhd24h",

"mac": "990xwhrsX-COXUNOuFO09HUHLU2C jdneeMqTtM4sGVDY=",

"keys": [{
"type": "encryption',
"algorithm": "aes",
"encryptedKey": "Dbf20 ZIX0 Zfj-0aU6zQjn3xixj6vm7LVX
XFDdX4xqie5bzUS1nnstIPYOyzxNx9Udt-J

LZ Zh—zM8A_FbSZ 8 ZAide3EPyd ",
"KEKIdentifier": "HK1RA8AQwcI="

}]

{llv" : l, lltll : llaull , Ilall : "h8256" , Ilkill : "HK]_R,A8AQWCI=" ,

"mac": "PMVmhmrgbj-KNybfMgHu4ySJ0GnVrwellMKpiuuGlIQ="}



Differences from JW*

It’s JSON ©

MAC is handled separately from signing
— Gets wrapped keys

Clearer structure and processing instructions
No integrity protection for parameters



Processing <--> Structure

* JW=™ objects are flat lists of fields, with
requirements not clearly specified

* Processing requires looking for collections of
fields being present

— Should | do key unwrapping or key agreement?

* JSMS organizes data elements according to
processing

— Algorithm parameters, public keys, wrapped keys
— Whenever there’s a branch point, isolate an object



Header Integrity

e JW* applies integrity protection to all header
parameters

— Unnecessary complexity, esp. for multiple recipients
* Survey of prior art:

— No protection: TLS, IKE

— Algorithm protection: CMS, PKIX

— Full parameter protection: XML-Dsig

* No clear benefit to protecting parameters other
than algorithms



Proposals

* Enable primary format to be JSON
— “baseb4 agility”

* Add internal structure and clarify
requirements / processing of JOSE objects
— Algorithm+parameters, public keys, wrapped keys
— Separate MAC from signing, allowing wrapped

keys

* Change from whole-header protection to

protection of designated attributes



