Database of Long-Lived Symmetric
Cryptographic Keys

draft-ietf-karp-crypto-key-table-03

R. Housley
T. Polk
S. Hartman
D. Zhang



Updates on Abstract

Clarify that “In addition to describing the schema for the
database, this document describes the operations that can be

performed on the database as well as the requirements for
the security protocols that wish to use the database.”



Updates on Introduction

* Add following statements:

— The information in the database is used to key the
authentication of security protocols such as cryptographic
authentication for routing protocols

— The database avoids the need to build knowledge of any
security protocol into key management protocols and
minimizes protocol-specific knowledge in operational/
management interfaces

— Textual conventions are provided for the representation of
keys and other identifiers.



Updates on Conceptual Database
Structure

LocalKeyID: replaced by LocalKeyName
PeerKeyID: replaced by PeerKeyName
Direction: a new value “disable” is defined

Interface: clarify that this field may consist of a set of
implementation specified strings



Textual Conventions

Key Names: When a key for a given protocol is identified by
an integer key identifier, the associated key name will be
represented as lower case hexadecimal integers with the
most significant octet first. This integer is padded with leading
0's until the width of the key identifier field in the protocol is

reached.

Keys: A key is represented as a lower-case hexadecimal string
with the most significant octet of the key first. The length of
this string depends on the associated algorithm and KDF.



Application of the Database in a
Security Protocol (1)

* |In order to use the key table database in a protocol
specification, a protocol, essentially, needs to specify
the following information.

(1) The ways of mapping the information in a key table row
to the information needed to produce an outgoing packet

(2) The ways of locating the peer identifier (a member of the
Peers set) and the LocalKkeyName inside an incoming
packet

(3) The methods of verifying a packet given a key table row

(4) The form and validation rules for LocalKkeyName and
PeerKeyName



Application of the Database in a
Security Protocol (2)

(5) The form and validation rules for members of the Peers
set

(6) The algorithms and KDFs supported
(7) The form of the Protocol Specific field

(8) The rules for canonicalizing LocalKeyName,
PeerKeyName, entries in the Peers set, or

ProtocolSpecifics; this may include normalizations such as
lower-casing hexadecimal strings

(9) The Indication whether the support for Interfaces is
required by this protocol



Discussion Related with TCP-AO

Security protocols such as TCP-AO [RFC5925] are expected to use
per- connection state. Implementations may need to supply keys to
the protocol-specific databases as the associated entries in the
conceptual database are manipulated.

Rather than consulting the conceptual database, a security protocol
such as TCP-AO may update its own tables as keys are added and
removed. In this case, the protocol needs to maintain its own key
information.

TCP-AO implementations are unlikely to make the decision of what
interface to use prior to key selection. In this case, the
implementations are expected to use the same keying material
across all of the interfaces and then require the "all" setting.



END



