
Layout engineering

• Experimenting with pNFS layouts for new storage 
types and domains

• Nit-picking, like opaque data in LAYOUTGET
• New ways to do things we already (or wanna) 

do, like Ceph or Lustre layouts
• New things that we don't do at all, like fine-

grained replication control
• RFC 5661 specifies private layout type ranges for 

experimentation
• Requires RFC Draft for registration

• Revisit this?



Ceph placement functions

• Ceph "CRUSH" family of placement functions 
mapping blocks to OSDs

• Not periodic
• In fact, it is psuedo-random

• Cycling over a fixed device list is inadequate to 
describe CRUSH placement functions

• Explosion of devices and device info
• In Ceph, every file (or even every file extent) 

might correspond to a unique device
• Results in server creating tons of virtual 

devices
• This goes way beyond the need for segmented 

layouts
• (And not even those are supported by the Linux 

client at the moment)



Stripe mapping

• In pNFS file, the striping pattern is device-
specific, while it is layout-specific for block and 
object

• It might be interesting to experiment with file-like 
layouts that carry a striping pattern

• We could support many more striping patterns 
without an explosion in the number of devices

• This would help with Ceph
• And might even obviate a Ceph layout (or might 

not)
• And might relate to Lustre layouts
• Boaz does not agree



Ceph devices and layouts

• We have been trying to avoid a native Ceph 
layout

• But what we have is kind of a hack
• And requires one or more devices for every file
• And segmented layouts

• A native Ceph layout would allow the pNFS client 
to speak RADOS directly to Ceph OSDs

• Lustre has similar issues
• In Ceph, the natural approach is to associate a 

device with a CRUSH map ruleset
• Ceph layout might also want to carry additional 

parameters, such as snapshot info



Consistency mechanism diversity

• Today we have close-to-open
• What if we want fine-grained update consistency?
• What if we want fine-grained mutable replication?

• Can pNFS layouts describe replication control 
strategies?

• Multipathing support in devices provides a 
starting point (maybe)

• Restricts replication to a single layout type 
(for a given file)

• Some sort of "stacked" layout?
• Eisler's MD striping ideas offers another 

way to think about this
• Placement functions?

• Layout must identify replication servers
• Layout might identify consistency and 

integrity mechanisms
• Or is that per FS?

• Do range delegations play a role?
• Looking for a way to negotiate consistency 

mechanisms


