Layout engineering

Experimenting with pNFS layouts for new storage
types and domains
Nit-picking, like opaque data in LAYOUTGET
New ways to do things we already (or wanna)
do, like Ceph or Lustre layouts
New things that we don't do at all, like fine-
grained replication control
RFC 5661 specifies private layout type ranges for
experimentation
Requires RFC Draft for registration
Revisit this?



Ceph placement functions

Ceph "CRUSH" family of placement functions
mapping blocks to OSDs
Not periodic
In fact, it is psuedo-random
Cycling over a fixed device list is inadequate to
describe CRUSH placement functions
Explosion of devices and device info
In Ceph, every file (or even every file extent)
might correspond to a unique device
Results in server creating tons of virtual
devices
This goes way beyond the need for segmented
layouts
(And not even those are supported by the Linux
client at the moment)



Stripe mapping

In pNFS file, the striping pattern is device-
specific, while it is layout-specific for block and
object
It might be interesting to experiment with file-like
layouts that carry a striping pattern
We could support many more striping patterns
without an explosion in the number of devices
This would help with Ceph
And might even obviate a Ceph layout (or might
not)
And might relate to Lustre layouts
Boaz does not agree



Ceph devices and layouts

We have been trying to avoid a native Ceph
layout
But what we have is kind of a hack
And requires one or more devices for every file
And segmented layouts
A native Ceph layout would allow the pNFS client
to speak RADOS directly to Ceph OSDs
Lustre has similar issues
In Ceph, the natural approach is to associate a
device with a CRUSH map ruleset
Ceph layout might also want to carry additional
parameters, such as snapshot info



Consistency mechanism diversity

Today we have close-to-open
What if we want fine-grained update consistency?
What if we want fine-grained mutable replication?
Can pNFS layouts describe replication control
strategies?
Multipathing support in devices provides a
starting point (maybe)
Restricts replication to a single layout type
(for a given file)
Some sort of "stacked" layout?
Eisler's MD striping ideas offers another
way to think about this
Placement functions?
Layout must identify replication servers
Layout might identify consistency and
integrity mechanisms
Or is that per FS?
Do range delegations play a role?
Looking for a way to negotiate consistency
mechanisms



