Server to ToR signaling

draft-kompella-nvo3-server2tor

Kireeti Kompella - Yakov Rekhter - Thomas Morin
The focus of this presentation is the case where the NVE is on the ToR device

- i.e. virtual network connectivity provided by ToR devices
Goals of this talk

• Describe the goals of this signaling
 – what, not how
• Describe the setting for this signaling
 – dispel some of the confusion here
• Say how this fits in with other mechanisms
 – “Control plane”, the Cloud OS, ...
• Say where we’d like to take the draft
 – Given support from the WG, of course
Goals of server2tor signaling

• Goals:

 1. Single **provisioning** touchpoint
 • (no provisioning of network devices in the critical path)
 2. No need for Cloud OS to be aware of DC network topology
 • for virtual network setup and VM mobility
 3. Synchronize parameters between server and NVE (local scope VLAN id)
Cloud OS

vSwitch

Hypervisor

VM

VM

Local scope VLAN ID for dataplane isolation

Server to ToR signalling

ToR

remote NVE

ToR

remote NVE

local NVE

“control plane”
Signaling: what? when?

- What is exchanged:
 - information letting the server determine which local VLAN id to use for a said VM

- When does signaling happen:
 - at VM instantiation time
 - at VM migration time
 - at VM termination time
Genericity

- Need for a generic solution:
 - agnostic to hypervisors
 - (esp. how a said hypervisor handles VM migration)
 - agnostic to whatever solution is used between ToRs:
 - 'pick your poison': TRILL, E-VPN, IP VPN, LISP, SPB, proprietary XYZ, etc...
- Need to have extensibility:
 - different ways to identify a virtual network
 - different mux/demux?
Authorization

• In this approach, the server is acting on behalf of the Cloud OS to trigger virtual networking

• It seems useful to allow the server to prove that this indeed is the case

• Need to allow the server2tor signaling to carry such a proof
Minimizing traffic loss during VM migration [1/2]

• Setting: a VM is moved from old server S connected to old ToR L to new server S’ connected to new ToR L’

• Two distributed events on servers:
 • S told to pause VM
 • S’ told to start VM

• Two distributed events on ToRs:
 • L told that VM has paused
 • L’ told the VM has started
Minimizing traffic loss during VM migration [2/2]

- Cannot assume strict time ordering among these events
- If L knows that VM has been paused locally and that VM has moved to S'/L', L can relay traffic to VM to L'
- This happens when remote NVEs haven’t yet got the update that VM moved
- If L' isn’t ready, it drops the traffic, but that’s no worse than L dropping it
Incremental deployment? [1/2]

Limitations of ARP (in no particular order):

• No way to “withdraw” an IP/MAC association
 – ARP relies on timeout
• Hard to distinguish move from multi-homing
• No way to authenticate ARPs
• No way to include a VNID in ARP message
 – unless the VNID is the VLAN tag
• If ARP is just for server2tor signaling, ToR has to intercept ARP and translate to control plane
• (possibly more)
Incremental deployment? [2/2]

- Incremental deployment is nice to have
- We don't believe ARP is a starting point
- Open question: how can this be done?
Use inside a server

• Main focus of the proposal is signaling between server and ToR switch

• We can conceive that such a signaling could also be useful inside a server, when NVE is on the server:

 use this signaling between the cloud OS agent on the compute node and the vswitch

• Could allow writing a single Cloud OS plugin for NVE which would be usable in both cases of NVE location (on server and on ToR)
Next steps

- We think this is useful
 - need for documenting requirements?
- We are interested on comments on the approach
 - thanks for those already made!
- There are several possible candidates for formatting the messages
 - and variants on details of information carried in the messages