Analysis of Port Control Protocol Deployment in Mobile Networks

draft-chen-pcp-mobile-deployment-01 IETF 84- Vancouver, Aug 2012

Gang Chen Zhen Cao Mohamed Boucadair Ales Vizdal Laurent Thiebaut China Mobile China Mobile France Telecom Deutsche Telekom Alcatel-Lucent

Motivations

- Usage in a mobile network is a indispensable case to PCP
 - The current PCP base specification explicitly mentions the benefits to reduce battery consumption (see the introduction)
- It may not be sufficient to directly adopt PCP in mobile case without any consideration regarding the particular context
- It's highly desirable to document specific considerations encouraging devices with low battery resources to embed a PCP client (e.g. mobile terminal, advanced sensors, etc.)
 - This document helps in promoting the introduction of PCP in such contexts

Changes since IETF#83

- Version 00~01
 - More proponents joined the work
 - Analyze PCP benefits and deployment options in Mobile
 - Identify major issues when PCP is adopted in a mobile context
 - Analyze PCP applicability to those issues and possible workarounds

Benefits & Issues

- Restoring Internet Reachability
- Keep-alive Message
 Optimization
- Safeguard from NAT sessions hijacking
- Energy Saving
- Balance Resource Assignment

- PCP Server Discovery
- MN and multi-homing
- Retransmission
- Unsolicited Messages
 Delivery
- Selected IP Traffic Offload (SIPTO)

P1: PCP Server Discovery

- Issues: DHCPv4 is not widely available in 3GPP network on a wide scale. I-D.ietf-pcp-dhcp can't be applied in the case
- Solutions
 - Use default router
 - Requires PCP server in default router (e.g., NAT in default router, or proxy PCP requests)
 - Use SRV to resolve PCP Service
 - Define a Well-Known PCP Name
 - Use PTR resolving (require operational planning, may not scale effectively)
 - Extending Protocol Configuration Options (PCO) in 3GPP spec (require additional 3GPP efforts)

P2: multi-homing

- Issues: PCP basically presumes to be applied in a single-homed model. However, multiple PDP contexts are allowed on a MN, on which multihomed situation is retained
- Workaround: a MN has to be able to manage multiple PCP server case

P3: Retransmission

Issues

- Initial PCP requests force mobile to become active
- PCP's retransmissions cause mobile node to always be active
- Becomes worse with multiple PCP clients
- Solutions
 - Synchronize (delay) initial PCP transmissions with radio link timers
 - Synchronize PCP retransmissions with radio link timers

P4: Unsolicited Messages Delivery

- Issues
 - Radio link is normally incapable of multicast
 - Care should be taken when unsolicited messages are required
 - the mapping changed due to renumbering
 - the PCP server (or NAT) lost its state
 - A uni-cast delivery is required to inform hosts, which are likely multiple thousands of hosts that were served by a PCP server would be implicitly paged.
- Since such messages are of significance to UE learning; Operators should guarantee the delivery

P5: Selected IP Traffic Offload (SIPTO)

- Issues
 - traffic would be offloaded at a particular points; the host could not determine which egress path packets would take
- Solutions
 - 1/ UE discovers all PCP Servers
 - 2/ This can be notified to the UE by configuring several PCP Names
 - 3/ The UE has to contact all these PCP Servers
 - Another potential solution has been documented in I-D.rpcwpcp-pmipv6-serv-discovery
 - More considerations should be taken into account in 3GPP network, in which radio layer ID is used, instead of 5-tuples, to identify the local offload context. Mapping functions between ID& 5-tuples are needed

Next Steps

- Is this a valid input to WG?
- Adopt it as a new work item?