Congestion Control Workshop

Summary

July 28, 2012
What can we do?

• Absent changes to the network can we actually do something?
 Yes

• Is there work in the area of measurements that can we do to create “incentives” to make updates in the network happen?
 Yes

• Is it useful to develop a congestion control mechanism that assumes the problem is in the end host (browser) only? (Where there is idle capacity in the network.)
 Yes

• There is a wide range of normal delay variation in non congested networks
 Investigate range and distribution to help design delay based algorithms
Two Solution Tracks

• Requires longer timeframe to deploy
• Improve network entities for those cases where network is congested.

• Examples
 • Get ECN deployed
 • Queue segregation
 • Classification of traffic (e.g., DPI, QoS signaling)

• Applicable to today’s timeframe
• Avoiding self-inflicted queuing.
• Approach: Ensure that the network does not get congested. Solution focuses on idle networks.

• Congestion control for real-time media that browsers send.
• Example:
 • Change the way TCP is used in browsers (avoid opening many concurrent TCP connections, interworking with DASH, use SPDY)
 • Single congestion manager on end host or browser
Design Aspects for Short-Term Approach

- Media is inherently variable. Codecs have limited scope for adaption
 - Focus on traffic characteristics of media (voice, video, data)
 - Different to TCP bulk transfer applications
 - Congestion controller needs to be aware of these limitations
 - Codecs may be bursty
 - Possibility to link congestion with current encoding
 - What information (if any) gets exchanged between codec and congestion control algorithm?

- Startup behavior?
Design Aspects for Short-Term Approach

- Feedback signals come in various forms:
 - RTCP, delay, loss, correlation between signal and jitter, etc.
 - Use explicit congestion signal, if available (obvious). Example: ECN
 - Need algorithm that reacts to all signals including delay, loss, ECN, etc.

- Delay-based and Loss-based Algorithms
 - Achieve low latency with algorithm design
 - Delay based algorithms are needed in this mode (unless you have things like ECN)
 - Needs to not fail when competing with TCP in case of losses