Multicast Forwarding in LLNs
(draft-ietf-roll-trickle-mcast-01)

Jonathan Hui
Richard Kelsey

ROLL WG Meeting
84th IETF Meeting
Vancouver, Canada
History

• 2011-04-11: draft-ietf-roll-trickle-mcast-00
 – Expired 2011-10-13

• 2012-07-13: draft-ietf-roll-trickle-mcast-01
 – No changes to content
Overview

• Problem
 – Forward IPv6 multicast messages without maintaining a multicast forwarding topology

• Solution
 – Flood (disseminate) IPv6 multicast messages
 – All devices in LLN receive the message
Dissemination Overview

- On receiving a message
 - If “new” message,
 - retransmit the message,
 - pass to upper layers if subscribed to mcast group
 - Otherwise, drop message

- What is “new”?
 - IPv6 HbH Option (SeedID, SeqNo)
 - SeedID: device that initiates dissemination
 - SeqNo: duplicate detection, message ordering
Retransmission Strategies

- Simple flooding (low latency)
 - Retransmit N times

- Controlled dissemination (low redundancy)
 - Trickle [RFC6206]
 - Adaptive transmission timing
 - Redundant transmission suppression
 - Advertise summaries rather than actual data messages

- Trickle parameterization
 - Simple flood: set k to infinity (no suppression)
 - Controlled dissemination: set k to small value
Sliding Windows

- Disseminate multiple messages from same SeedID
 - Receiving messages out of order will filter old messages

- Sliding window
 - Bounded history to allow some out-of-order
 - May size window based on memory constraints
Implementations

- ZigBee
 - Component of SEP 2.0
 - Implementation by several vendors
 - Simple flooding used with mDNS

- Cisco
 - Simple flooding and controlled dissemination

- Peter van der Stok
 - Controlled dissemination in simulation

- Others?
Next Steps

- IPv6-in-IPv6 Encapsulation
 - Insert/remove HbH Option

- Reserve bits for straightforward evolution
 - Flags/version/etc.

- Incorporate suggestions in draft-vanderstock-roll-mcreq

- Add more text, tighten up specification, etc.

- More feedback from WG!