Summary
SIDR Interim 27 Jul 2012



Agenda

1) Deployment Considerations in RPKI —
Measurements and Data

a) Tim Bruinzeels
b) Randy Bush

2) Deployment Considerations in RPKI —
Alternative Communication Designs
a) Tim Bruinzeels
b) Rob Austein

3) Deployment and BGPSEC Protocol



Measurements and Data

e Tim Bruiinzeels

 Difficulties with current deployment —
repository reliability, no proxying/cacheing
for performance, object organization
choices at some places (flat rather than
hierarchic) causes problems for RPs, etc.

* Rsync issues — no transactions, heavy
load on server, no libraries, no real spec,
error msgs bad, etc



Measurements and Data

 Recounted experiment with volunteer test objects
— Simulated hierarchic by prefetching and modifying URIs

— 15K reports from 37 different instances — great differences
between clients and between runs

» See slides for graphs
— V6 problems

* Ran experiment in small lab machines to test what
eventual load might be

— This load is some time in the future

— 12K CAs, 70K objects

— Rsync thoughput vs # concurrent clients had cliff as number of
forks exhausted memory

— Can disallow recursive fetching (but then loose advantage of
hierarchic orgnanization)




Measurements and Data

Randy Bush

Early report on RPKI Propagation Emulation
Measurement

— Propagation: time from CA publish to Relying Party
— See slides for nifty keeno experimental setup

Measurements Desired

— Propagation characteristics (sensitivity to cache RTT, timers)

— Split between propagation and validation

Distinguishing gatherers (who synchronize with global

repository system) and caches (who feed off gatherers
or other caches)

Results (EARLY) say propagation time is 500-2000 sec
depending on to/from RIPE/RIR/gatherer/cache/router

— ... and flat organization moves curve to right




Measurements and Data

Randy Bush

Measurements of current deployments
— See slides for graphs

Some repositories have poor reliability records

— RIRs aren’t 24x7 operators (outages on weekends,
etc)

— Lack of response to reports of problems

But RIPE number of objects is up and to the
right — which is an EXCELLENT thing



Measurements and Data

Consensus

Problems are NOT barrier to deployment
rsync useful first implementation

— no re-inventing of syncing protocol or incremental fetching

— works, mostly

— good enough to build up experience

— but see next topic about beginning to look at alternatives
flat organization causes problems for RPs

— this can be (should be) fixed in those repositories that do it

— some discussion of overt way to communicate this to community
relying party software needs to expect problems
need more monitoring (more eyes, more tools)
Some discussion of need for doc describing repository ops



Alternative Communication
Designs

 Tim Bruiinzeels

 Rsync
— pros: can retrieve incrementally for RPs,
— cons: incremental is hard for servers

o Http
— Proven protocol, implementations, etc
* Implementation ease: native libraries, error msgs, etc

— Difficult to retrieve increments, so hard for RPs

* And latency has huge impact on performance unless
parallelize fetching



Alternative Communication
Designs

 Rsync deltas are good for RPs, bad for
servers

* Discussion of alternate with update
notifications and http (RPs compute the
deltas)



Alternative Communication
Designs

Rob Austein

Rsync issues; Flat hierarchy means more
connections

Discussed a few ideas to play with
— Dns-like zones, ATOM+Bittorrent, etc

Important to consider data freshness

— How close can RP come to CA published data
« Need more measurements



Alternative Communication
Designs

CONSENSUS

We need to deploy rsync basis NOW
We will need an alternative eventually
We need to begin work on the alternative NOW

Just what do we need In an alternative, I.e.,
requirements? (and do we need a doc on this?)
— Incremental fetching

— Fetch object structure should reflect logical object
structure (ie cert hierarchy)

There are only so many ways to slice this bread
— Choose impact: server, client, or (and/or) network




BGPSEC Protocol

 New version has section on confed handling

e Discussion of need to include the target AS In
the sig attribute — to handle AS aliasing cases
— Using pcount=0 to solve this
— Discussion of separate doc to show how this works

e Discussion of (in)stable signatures

— ECDSA produces different signatures over the exact
same data

— So duplicate updates won't look like duplicate
updates if you are just doing strict compare

— Could be just “advice to implementers” — Matt will do



