
Insights into Laminar TCP

TCPM, IETF-84
July 30, 2012

Matt Mathis
mattmathis@google.com

draft-mathis-tcpm-laminar-tcp-01
https://developers.google.com/speed/protocols/tcp-laminar

https://developers.google.com/speed/protocols/tcp-laminar
https://developers.google.com/speed/protocols/tcp-laminar

Running code

● Patch against Linux 3.5
○ https://developers.google.com/speed/protocols/tcp-laminar

● Follows the ID fairly closely
○ Replaces nearly all congestion control code
○ Optimized for clarity of the new code

■ not minimal foot print
■ not minimal delta

○ Does not support new vs old comparison testing
○ Too intrusive to "go upstream" easily

● Suggestions would be very helpful
○ (But don't use tcpm for Linux specific discussions)

https://developers.google.com/speed/protocols/tcp-laminar
https://developers.google.com/speed/protocols/tcp-laminar

Laminar TCP - single loss

cwnd and ssthresh are overloaded

● cwnd carries both long term and short term state
○ Long term state sometimes gets saved in ssthresh

● ssthresh carries queue size estimate and (temp) cwnd
● Poorly defined interactions between:

○ Application stalls and congestion control
○ Application stalls and loss recovery
○ Reordering and congestion avoidance
○ Other unanticipated concurrent events
○ ...

● Solution is to refactor & respecify Congestion Control

Laminar: Two separate subsystems

● Pure congestion control
○ New state variable: CCwin
○ The quantity of data to be sent during each RTT
○ Carries state between successive RTTs
○ Not concerned with timing details, bursts etc
○ Can adapt decades of existing knowledge base

● Transmission scheduling
○ Controls exactly when to transmit
○ Packet conservation self clock (mostly)

■ Tries to follow CCwin
■ Does slow start, PRR, burst suppression
■ Future: Cwnd validation, pacing

○ Previously entwined in other algorithms
■ Not well understood as an independent subsystem

Transmission Scheduling

● Transmission scheduling
○ Packet conservation self clock (mostly)
○ Primary state is implicit, recomputed on every ACK

■ Currently no explicit long term state
○ Variables: pipe (3517), total_pipe and DeliveredData

● DeliveredData = delta(snd.una)+delta(sacked)
○ As defined in PRR
○ Computed on every ACK
○ Robust: SUM(DeliveredData) == net forward progress

● Default quantity of data to send is DeliveredData
○ This implements TCP's self clock

Total_pipe vs Pipe

● Total_pipe is pipe plus
○ DeliveredData for the current ACK, plus
○ Any pending TSO data (snd_bank)

● Thought experiment:
○ Constant circulating data (always send DeliverdData)
○ Assume pipe = 10

■ Which equals (snd.nxt - snd.una) outside of TCP
○ Which is always constant
○ During sender ACK processing

■ If the receiver delayed ACK, pipe = 8
■ If the receiver quick ACK'd, pipe = 9
■ But total_pipe is always 10

Total_Pipe

● Invariant across most protocol events
● Not changed by ACK processing

○ Except when segments are tagged "lost" by SACK
○ NB: technically an estimator if there are SACK holes

■ Due to lost/ooo ambiguity
● Changed by transmission scheduling

○ +1 per ACK to do slow start
○ -1 on some ACKs to do PRR

● Not altered by TSO or small application stalls
● Drops during application stalls

○ (Although this is really CWV and not Laminar)

New vs Old

● In Laminar, default is to send DeliveredData per ACK
(or add it to snd_bank to permit TSO)

○ Adjusted +/- a little depending on (CCwin-total_pipe)
○ Note that:

■ CCwin is the long term estimate of the "fair" window
■ total_pipe the short term estimate of the actual winow

● In traditional TCP
○ Transmission is controlled directly by (cwnd-pipe)

■ TSO can choose to wait for pipe to drop further
○ Everything tweaks cwnd

■ cwnd mixes long term and short term estimates
■ In many states both pipe and cwnd are short term,

while ssthresh is long term

Standards Impact: ~60 RFCs

● Most RFC references cwnd&ssthersh have minimal impact
○ Can be fixed generically, are experimental, or not TCP

● MIBs, etc, that instrument both cwnd and ssthresh
○ Require slightly more thought

● A handful describe algorithms using both cwnd and ssthresh
○ RFC 5681 - TCP Congestion Control
○ RFC 5682 - F-RTO
○ RFC 4015 - Eifel Response (aka undo)
○ RFC 6582 - NewReno
○ RFC 2861 - Cwnd Validation (and newcwv)
○ RFC 3571bis - SACK based loss recovery
○ PRRid - Proportional Rate Reduction (ID)

● These are already mentioned in the Laminar draft

Next steps - Running code

● Further refine the patch
○ Cosmetic changes to minimize the core Laminar patch

■ Extract some technically out-of-scope enhancements
○ One or more "Laminar Additions" patchs

■ Not strictly Laminar per se, but enabled by it
■ Enhancements extracted above from the core
■ Exact manifest TBD (See ICCRG later)

○ Possibly partition the core Laminar patch
■ To facilitate incremental testing

■ pipe vs total_pipe
■ Output (cwnd-pipe) vs snd_bank
■ ACK processing to compute sndcnt

Next steps - Further evolution?

● There were major opportunities for "feature creep"
● Current strategy is to narrow Laminar as much as possible
● Separate out all other enhancements

○ But we want to follow up on them
○ Feels like a large "ball of twine"
○ Each enhancement/refactor probably leads to another
○

Planned new mailing list

● laminar@ietf.org

This list is for discussing Laminar TCP and how to proceed with
it, through new or existing working groups in the IETF and/or
IRTF. It is also intended for technical discussion of Laminar
and refactoring of TCP algorithms in general.

Questions?

draft-mathis-tcpm-laminar-tcp-01

https://developers.google.com/speed/protocols/tcp-laminar

https://developers.google.com/speed/protocols/tcp-laminar
https://developers.google.com/speed/protocols/tcp-laminar

Backup Slides

(Mostly from prior IETF presentations)

Variables

● CCwin: (Target) Congestion Control window

● pipe: From 3517, data which has been sent but not ACKed
or SACKed

● DeliveredData: Quantity of newly delivered data reported by
this ACK (see PRR)

● total_pipe = pipe+DeliveredData+SndBank; This is all
circulating data

● SndCnt: permission to send computed from the current ACK
Note that the above 4 are recomputed on every ACK

● SndBank: accumulated SndCnt to permit TSO etc

Default (Reno) Congestion Control

On startup:
 CCwin = MAX_WIN

On ACK if not application limited:
 CCwin += MSS*MSS/CCwin // in Bytes

On congestion:
 if CCwin == MAX_WIN
 CCwin = total_pipe/2 // Fraction depends on delayed ACK and ABC
 CCwin = CCwin/2

Except on first loss, CCwin does not depend on pipe!

Default transmission scheduling

sndcnt = DeliveredData // Default is constant window
if total_pipe > CCwin:
 // Proportional Rate Reduction
 sndcnt = (PRR calculation)
if total_pipe < CCwin:
 // Implicit slowstart
 sndcnt = DeliveredData+MIN(DeliveredData, ABClimit)

SndBank += sndcnt
while (SndBank && TSO_ok())
 SndBank -= transmitData()

Algorithm updates

● Draft describes default Laminar versions of:
○ Congestion Avoidance (Reno)
○ Restart after idle
○ Congestion Window Validation
○ Pacing (generic)
○ RTO and F-RTO
○ Undo (generic)
○ Control Block Interdependence
○ Non-SACK TCP

● However there are many opportunities for improvement

Technical summary

● Today cwnd does both CC and transmission scheduling
○ Which are often in conflict
○ Every algorithm has to avoid compromising other uses

● Many pairs of functions interact poorly:
○ Congestion control and loss recovery
○ Application stalls and loss recovery
○ Pacing and CC
○ CC and restart after idle
○ etc

● Laminar separates CC and transmission scheduling
○ They become independent
○ Can evolve separately
○ No "cross subsystem" interactions

TCPM Issues

● Laminar removes ssthresh and cwnd
○ Updates or obsoletes approximately 60 RFC's
○ Interim plan: organize draft parallel to existing docs

● Most algorithm changes are straight forward
○ TCPM style standards (re)design
○ A few details have no precedent or otherwise call for

significant redesign: Move to ICCRG?
● At what level (time?) does TCPM want to get involved?

○ Best if original authors redesign their own algorithms

Fluid model Congestion Control

On every ACK: // Including during recovery
 CCwin += MAX(DeliveredData, ABClimit)*MSS/CCwin
On retransmission:
 oldCC = CCwin
 if (CCwin == MAX_WIN):
 CCwin = initialCCestimate(total_pipe)
 CCwin = CCwin/2
 undoDelta = oldCC - CCwin
Undo:
 CCwin = MIN(CCwin+undoDelta, MAX_WIN)
 undoDelta = 0

Insensitive to reordering and spurious retransmissions!

