
DCTCP & CoDel
the Best is the Friend of the Good

Bob Briscoe, BT
Murari Sridharan, Microsoft
IETF-84 TSVAREA Jul 2012

Le mieux
est l'ennemi

du bien

V
ol

ta
ire



menu

1. why DCTCP is important

2. an (untested) roadmap
how might DCTCP be deployed and co-
exist with current Internet traffic & AQMs



line
utilisation

buffer
utilisation b u f f e r    s i z e

queue
management

operating point

shallower
operating

point

good line 
utilisation

lower queuing 
delay

buffer kept 
for bursts

TCP saw-teeth seeking 
the operating point DCTCP:

more
smaller 

saw-teeth

Today
TCP on end-systems
RED in queues

if solely change queues change queues
and end-systems

cuts delay but 
poorer line 
utilisation

time

Data Centre TCP (DCTCP)
high utilisation in steady state still leaves room for bursts



Data Center TCP Algorithm

Switch side:

• Mark packets when Queue Length > K

Sender side (differences from TCP New Reno):
• Maintain moving average of fraction of marked packets (αααα)

• Adaptive congestion window decrease:

B KMark Don’t 
Mark

each RTT :  F = #  of marked ACKs
Total #  of ACKs

 ⇒   α ← (1− g)α + gF

W ← (1− α
2

)W



DCTCP in Action

20

Setup: Win 7, Broadcom 1Gbps Switch

Scenario: 2 long-lived flows, K = 30KB

(K
b

y
te

s)



18

Parameters: 
link capacity = 10Gbps
RTT = 480µs
smoothing constant (at source), g = 0.05.

For TCP:

Throughput → 75%

ThroughputThroughput--Latency TradeoffLatency Tradeoff

Throughput > 94% 

as K ���� 0



DCTCP only for data centres?

• named for a feasible deployment scenario
• a change to all senders, receivers and switches*

• not intended to be its sole applicability
• addresses high bandwidth-delay product

• should be applicable to slow links & long RTTs

• only tested down to 100Mb/s so far†

* Switches/routers only require reconfig if they support ECN
senders (and receivers) require implementation change

† An issue with a wide range of RTTs has been addressed

100Mb/s x 500 µs
=

250kb/s x 200ms



DCTCP activity

• E2e Transport
• In Windows 8 Server 

data center template
• I-D for DCTCP feedback (intended EXP) 

[draft-kuehlewind-tcpm-accurate-ecn-01]

• AQM
• Existing kit: Just a degenerate config of RED
• Can be implemented as just a step at K packets (single ‘if’ command)
• For zero-delay can use a virtual queue [RC5670]

• hardware implementations [“How to Build a Virtual Queue from Two Leaky Buckets”]

• see HULL for specifics with DCTCP

• Analysis, papers, Linux & ns2 implementation, etc
• <http://www.stanford.edu/~alizade/Site/DCTCP.html>

• SIGCOMM paper gives entry point

Averaged

F
ig

ur
es

 c
ou

rt
es

y 
of

 A
liz

ad
eh

et
 a

l



DCTCP: differences from traditional AQMs
e.g. CoDel

• source smooths signals
• not the queue

• source responds to extent of signals
• not just their existence

• designed for ECN only



which node owns the RTT?

• we want to smooth away queues that disappear 
within ~1 RTT

• but which RTT? 

the network?
• traditional AQMs hold back signals for the 

‘nominal’ worst-case (long RTT)

• DCTCP signals immediately 

• no ‘nominal’ RTT to configure / hard-code / adapt

the host?
• each DCTCP flow smooths over its own RTT

• short RTT flows can fill troughs & avoid peaks
on behalf of longer ones (and themselves)

inst.
queue 
length

traditional AQM 
signals are just 
getting started

~5ms
local RTT
incl. caches

100ms nominal 
continental RTT

time



DCTCP & CoDel
the Best is the Friend of the Good

But DCTCP’s approach only
makes sense with ECN…

Encore, le mieux
est l'ennemi du

bien



ECN and drop are not equivalent

• ECN is solely a signal
• no problem sending out a burst of ECN and later 

smoothing it away at the source

• drop is both an impairment and a signal
• simultaneously want to avoid it and hear it

• a burst of loss can’t just be smoothed away 
– collateral damage from timeouts etc.



Can smoothing on the host interoperate 
with smoothing in the network?

current rule (paraphrased from RFC 3168)
• Signal ECN when queue would otherwise drop
• Respond to ECN exactly as a drop
• intended to prevent starvation of one by the other

proposal: overload the meaning of an ECN-capable pkt
• for queue, ECN also means SHOULD NOT smooth
• for transport, ECN also means SHOULD smooth
• under persistent congestion 

• need to ensure shares stabilise and no-one starves
• despite different dynamics



interoperability 
between old & overloaded meanings of ECN

��1instant ECN

�2�smoothed ECN

small smoothed 
responses to

each ECN

one big instant
response to 

ECN per RTT

host

queue

ticks are based on conjecture, not experimental evidence

1 don’t get full gain in latency until host upgrades as well
2 doubly delayed response to congestion



message

• zero-config AQMs are good
• CoDel for drop

• simple step for ECN 
– far greater potential gains

• in parallel to CoDel field testing
• work on interop with unsmoothed AQM for ECN

• otherwise the lazy option (ECN = drop) prevails

• would be a wasted opportunity



DCTCP & CoDel
the Best is the Friend of the Good

Q&A Je ne savais 
pas le mieux 
était si simple



Data Center TCP Algorithm

Switch side:

• Mark packets when Queue Length > K

Sender side:
• Maintain moving average of fraction of marked packets (αααα)

• Adaptive congestion window decrease:

B KMark Don’t 
Mark

each RTT :  F = #  of marked ACKs
Total #  of ACKs

 ⇒   α ← (1− g)α + gF

W ← (1− α
2

)W


