Congestion control algorithm for lower latency and lower loss media transport – initial draft

draft-ohanlon-rmcat-dflow-00

Piers O’Hanlon
Ken Carlberg
Most existing congestion control is loss-based

- Results in full queues => high delay and loss
 - E.g. TCP{new/Reno, Cubic}, TFRC, SCTP, TFWC

Some delay-based schemes – But most don’t aim to *minimise* delay

- E.g. CARD, Tri-S, Vegas, CTCP (partial), CxTCP, LEDBAT

A few do now (but mostly unpublished)

- Ghanbari fuzzy logic, Google RRTCC
DFlow: Objectives

• **Lower Delay**: Needed in today’s bufferbloated Net
 – Should stay below 150ms [ITU.G114] (not exceed 400ms)
• **Lower Loss**: Loss is bad for media (limited retransmit)
 – Low delay usually implies low loss as queues not full
• **Smoothness**: Codec output generally smooth
 – Within the constraints of the media, codec, and network path.
• **Fairness**: Should aim to be reasonably fair
 – Initially we aim for self fairness and we aim to tackle TCP fairness in later rev.
Objectives (Planned)

• **[Burst Management]**: Mechanisms to handle the bursty nature of media
 – E.g. Allow bursts when conditions permit
 – Providing for smoother quality

• **[Loss-based mode]**: Mechanisms to allow for ‘fair’ throughput against loss-based CC flows
 – Without additional network support (e.g. Codel) delay (and loss) would be largely beyond control.
Design Outline

• Loosely based on TFRC design
 – Disabled delay-based oscillation smoothing
 – Due to interference with delay-based behaviours

• TCP equation to derive an operating rate

• Utilises ‘delay losses’
 – Based on relative delay and its derivative

• Building ‘congestion event history’
 – Based on TFRC ‘loss event history’ mechanism
Simulation: DFlow

5 DFlows with 1 reverse TCP on DSL Uplink (730Kbps)
Simulation: TFRC

5 TFRCs with 1 reverse TCP on DSL Uplink (730Kbps)
Discussion

• This is preliminary work and we’re seeking feedback
• Refinement of planned objectives
• More simulations and testing