
Network Working Group A. Newton
Internet-Draft ARIN
Intended status: Standards Track P. Cordell
Expires: April 1, 2018 Codalogic
 September 28, 2017

 A Language for Rules Describing JSON Content
 draft-newton-json-content-rules-09

Abstract

 This document describes a language for specifying and testing the
 expected content of JSON structures found in JSON-using protocols,
 software, and processes.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at https://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on April 1, 2018.

Copyright Notice

 Copyright (c) 2017 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust’s Legal
 Provisions Relating to IETF Documents
 (https://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Newton & Cordell Expires April 1, 2018 [Page 1]

Internet-Draft JSON Content Rules September 2017

Table of Contents

 1. Introduction . 3
 1.1. A First Example: Specifying Content 3
 1.2. A Second Example: Testing Content 3
 2. Overview of the Language 5
 3. Lines and Comments . 7
 4. Rules . 8
 4.1. Rule Names and Assignments 8
 4.2. Annotations . 9
 4.3. Starting Points and Root Rules 10
 4.4. Type Specifications 10
 4.5. Primitive Specifications 12
 4.5.1. Numbers, Booleans and Null 12
 4.5.2. Strings . 13
 4.6. Any Type . 16
 4.7. Member Specifications 16
 4.8. Object Specifications 16
 4.9. Array Specifications 19
 4.9.1. Unordered Array Specifications 21
 4.10. Group Specifications 21
 4.11. Ordered and Unordered Groups in Arrays 22
 4.12. Sequence and Choice Combinations in Array, Object, and
 Group Specifications 22
 4.13. Repetition in Array, Object, and Group Specifications . . 23
 4.14. Negating Evaluation 25
 5. Directives . 26
 5.1. jcr-version . 26
 5.2. ruleset-id . 27
 5.3. import . 27
 6. Tips and Tricks . 28
 6.1. Any Member with Any Value 28
 6.2. Lists of Values . 29
 6.3. Groups in Arrays . 29
 6.4. Groups in Objects . 30
 6.5. Group Rules as Macros 31
 6.6. Object Mixins . 31
 6.7. Subordinate Dependencies 31
 7. Implementation Status . 32
 7.1. JCR Validator . 32
 7.2. Codalogic JCR Parser 33
 7.3. JCR Java . 33
 8. ABNF Syntax . 33
 9. Acknowledgements . 39
 10. References . 39
 10.1. Normative References 39
 10.2. Infomative References 40
 10.3. URIs . 40

Newton & Cordell Expires April 1, 2018 [Page 2]

Internet-Draft JSON Content Rules September 2017

 Appendix A. Co-Constraints 40
 Appendix B. Testing Against JSON Content Rules 41
 B.1. Locally Overriding Rules 41
 B.2. Rule Callbacks . 42
 Appendix C. Changes from -07 and -08 42
 Authors’ Addresses . 42

1. Introduction

 This document describes JSON Content Rules (JCR), a language for
 specifying and testing the interchange of data in JSON [RFC7159]
 format used by computer protocols and processes. The syntax of JCR
 is not JSON but is "JSON-like", possessing the conciseness and
 utility that has made JSON popular.

1.1. A First Example: Specifying Content

 The following JSON data describes a JSON object with two members,
 "line-count" and "word-count", each containing an integer.

 { "line-count" : 3426, "word-count" : 27886 }

 Figure 1

 This is also JCR that describes a JSON object with a member named
 "line-count" that is an integer that is exactly 3426 and a member
 named "word-count" that is an integer that is exactly 27886.

 For a protocol specification, it is probably more useful to specify
 that each member is any integer and not specific, exact integers:

 { "line-count" : integer, "word-count" : integer }

 Figure 2

 Since line counts and word counts should be either zero or a positive
 integer, the specification may be further narrowed:

 { "line-count" : 0.. , "word-count" : 0.. }

 Figure 3

1.2. A Second Example: Testing Content

 Building on the first example, this second example describes the same
 object but with the addition of another member, "file-name".

Newton & Cordell Expires April 1, 2018 [Page 3]

Internet-Draft JSON Content Rules September 2017

 {
 "file-name" : "rfc7159.txt",
 "line-count" : 3426,
 "word-count" : 27886
 }

 Figure 4

 The following JCR describes objects like it.

 {
 "file-name" : string,
 "line-count" : 0..,
 "word-count" : 0..
 }

 Figure 5

 For the purposes of writing a protocol specification, JCR may be
 broken down into named rules to reduce complexity and to enable re-
 use. The following example takes the JCR from above and rewrites the
 members as named rules.

 {
 $fn,
 $lc,
 $wc
 }

 $fn = "file-name" : string
 $lc = "line-count" : 0..
 $wc = "word-count" : 0..

 Figure 6

 With each member specified as a named rule, software testers can
 override them locally for specific test cases. In the following
 example, the named rules are locally overridden for the test case
 where the file name is "rfc4627.txt".

 $fn = "file-name" : "rfc4627.txt"
 $lc = "line-count" : 2102
 $wc = "word-count" : 16714

 Figure 7

Newton & Cordell Expires April 1, 2018 [Page 4]

Internet-Draft JSON Content Rules September 2017

 In this example, the protocol specification describes the JSON object
 in general and an implementation overrides the rules for testing
 specific cases.

 All figures used in this specification are available here [1].

2. Overview of the Language

 JCR is composed of rules (as the name suggests). A collection of
 rules that is processed together is a ruleset. Rulesets may also
 contain comments, blank lines, and directives that apply to the
 processing of a ruleset.

 Rules are composed of two parts, an optional rule name and a rule
 specification. A rule specification can be either a type
 specification or a member specification. A member specification
 consists of a member name specification and a type specification.

 A type specification is used to specify constraints on a superset of
 a JSON value (e.g. number / string / object / array etc.). In
 addition to defining primitive types (such as string or integer),
 array types, and object types, type specifications may define the JCR
 specific concept of group types.

 Type specifications corresponding to arrays, objects and groups may
 be composed of other rule specifications.

 A member specification is used to specify constraints on a JSON
 member (i.e. members of a JSON object).

 Rules with rule name assignments may be referenced in place of type
 specifications and member specifications.

 Rules may be defined across line boundaries and there is no line
 continuation syntax.

 Any rule consisting only of a type specification is considered a root
 rule. Unless otherwise specified, all the root rules of a ruleset
 are evaluated against a JSON instance or document.

 Putting it all together, Figure 9 describes the JSON in Figure 8.

Newton & Cordell Expires April 1, 2018 [Page 5]

Internet-Draft JSON Content Rules September 2017

 Example JSON shamelessly lifted from RFC 4627

 {
 "Image": {
 "Width": 800,
 "Height": 600,
 "Title": "View from 15th Floor",
 "Thumbnail": {
 "Url": "http://www.example.com/image/481989943",
 "Height": 125,
 "Width": 100
 },
 "IDs": [116, 943, 234, 38793]
 }
 }

 Figure 8

Newton & Cordell Expires April 1, 2018 [Page 6]

Internet-Draft JSON Content Rules September 2017

 Rules describing Figure 8

 ; the root of the JSON instance is an object
 ; this root rule describes that object
 {

 ; the object specification contains
 ; one member specification
 "Image" : {

 ; $width and $height are defined below
 $width,
 $height,

 ; "Title" member specification
 "Title" :string,

 ; "Thumbnail" member specification, which
 ; defines an object
 "Thumbnail": {

 ; $width and $height are re-used again
 $width, $height,

 "Url" :uri
 },

 ; "IDs" member that is an array of
 ; one ore more integers
 "IDs" : [integer *]

 }
 }

 ; The definitions of the rules $width and $height
 $width = "Width" : 0..1280
 $height = "Height" : 0..1024

 Figure 9

3. Lines and Comments

 There is no statement terminator and therefore no need for a line
 continuation syntax. Rules may be defined across line boundaries.
 Blank lines are allowed.

Newton & Cordell Expires April 1, 2018 [Page 7]

Internet-Draft JSON Content Rules September 2017

 Comments are the same as comments in ABNF [RFC4234]. They start with
 a semi-colon (’;’) and continue to the end of the line.

4. Rules

 Rules have two main components, an optional rule name assignment and
 a type or member specification.

 Type specifications define arrays, objects, etc... of JSON and may
 reference other rules using rule names. Most type specifications can
 be defined with repetitions for specifying the frequency of the type
 being defined. In addition to the type specifications describing
 JSON types, there is an additional group specification for grouping
 types.

 Member specifications define members of JSON objects, and are
 composed of a member name specification and either a type
 specification or a rule name referencing a type specification.

 Rules may also contain annotations which may affect the evaluation of
 all or part of a rule. Rules without a rule name assignment are
 considered root rules, though rules with a rule name assignment can
 be considered a root rule with the appropriate annotation.

 Type specifications, depending on their type, can contain zero or
 more other specifications or rule names. For example, an object
 specification might contain multiple member specifications or rule
 names that resolve to member specifications or a mixture of member
 specifications and rule names. For the purposes of this document,
 specifications and rule names composing other specifications are
 called subordinate components.

4.1. Rule Names and Assignments

 Rule names are signified with the dollar character (’$’), which is
 not part of the rule name itself. Rule names have two components, an
 optional ruleset identifier alias and a local rule name.

 Local rule names must start with an alphabetic character (a-z,A-Z)
 and must contain only alphabetic characters, numeric characters, the
 hyphen character (’-’) and the underscore character (’_’). Local
 rule names are case sensitive, and must be unique within a ruleset
 (that is, no two rule name assignments may use the same local rule
 name).

 Ruleset identifier aliases enable referencing rules from another
 ruleset. They are not allowed in rule name assignments, and only
 found in rule names referencing other rules. Ruleset identifiers

Newton & Cordell Expires April 1, 2018 [Page 8]

Internet-Draft JSON Content Rules September 2017

 must start with an alphabetic character and contain no whitespace.
 Ruleset identifiers are case sensitive. Simple use cases of JCR will
 most likely not use ruleset identifiers.

 In Figure 10 below, "http://ietf.org/rfcYYYY.JCR" and
 "http://ietf.org/rfcXXXX.JCR" are ruleset identifiers and "rfcXXXX"
 is a ruleset identifier alias.

 # ruleset-id http://ietf.org/rfcYYYY.JCR
 # import http://ietf.org/rfcXXXX.JCR as rfcXXXX
 $my_encodings = ("mythic" | "magic")
 $all_encodings = ($rfcXXXX.encodings | $my_encodings)

 Figure 10

 There are two forms of rule name assignments: assignments of
 primitive types and assignments of all other types. Rule name
 assignments to primitive type specifications separate the rule name
 from the type specification with the character sequence ’=:’, whereas
 rule name assignments for all other type specifications only require
 the separation using the ’=’ character.

 ;rule name assignments for primitive types
 $foo =: "foo"
 $some_string =: string

 ;rule name assignments for arrays
 $bar = [integer, integer, integer]

 ;rule name assignement for objects
 $bob = { "bar" : $bar, "foo" : $foo }

 Figure 11

 This is the one little "gotcha" in JCR. This syntax is necessary so
 that JCR parsers may readily distinguish between rule name
 assignments involving string and regular expressions primitive types
 and member names of member specifications.

4.2. Annotations

 Annotations may appear before a rule name assignment, before a type
 or member specification, or before a rule name contained within a
 type specification. In each place, there may be zero or more
 annotations. Each annotation begins with the character sequence "@{"
 and ends with "}". The following is an example of a type
 specification with the not annotation (explained in Section 4.14):

Newton & Cordell Expires April 1, 2018 [Page 9]

Internet-Draft JSON Content Rules September 2017

 @{not} ["fruits", "vegatables"]

 Figure 12

 This specification defines the annotations "root", "not", and
 "unordered", but other annotations may be defined for other purposes.

4.3. Starting Points and Root Rules

 Evaluation of a JSON instance or document against a ruleset begins
 with the evaluation of a root rule or set of root rules. If no root
 rule (or rules) is specified locally at runtime, the set of root
 rules specified in the ruleset are evaluated. The order of
 evaluation is undefined.

 The set of root rules specified in a ruleset is composed of all rules
 without a rule name assignment and all rules annotated with the
 "@{root}" annotation.

 The "@{root}" annotation may either appear before a rule name
 assignment or before a type definition. It is ignored if present
 before referenced rule name inside of a type specification.

4.4. Type Specifications

 The syntax of each type of type specifications varies depending on
 the type:

Newton & Cordell Expires April 1, 2018 [Page 10]

Internet-Draft JSON Content Rules September 2017

 ; primitive types can be string
 ; or number literals
 ; or number ranges
 "foo"
 2
 1..10

 ; primitive types can also be more generalized types
 string
 integer

 ; primitive type rules may be named
 $my_int =: 12

 ; member specifications consist of a member name
 ; followed by a colon and then followed by another
 ; type specification or a rule name
 ; (example shown with a rule name assignment)
 $mem1 = "bar" : "baz"
 $mem2 = "fizz" : $my_int

 ; member names may either be quoted strings
 ; or regular expressions
 ; (example shown with a rule name assignment)
 $mem3 = /^dev[0-9]$/ : 0..4096

 ; object specifications start and end with "curly braces"
 ; object specifications contain zero
 ; or more member specifications
 ; or rule names which reference a member specification
 { $mem1, "foo" : "fuzz", "fizz" : $my_int }

 ; array specifications start and end with square brackets
 ; array specifications contain zero
 ; or more non-member type specifications
 [1, 2, 3, $my_int]

 ; finally, group specifications start and end with parenthesis
 ; groups contain other type specifications
 ([integer, integer], $rule1)
 $rule1 = [string, string]

 Figure 13

Newton & Cordell Expires April 1, 2018 [Page 11]

Internet-Draft JSON Content Rules September 2017

4.5. Primitive Specifications

 Primitive type specifications define content for JSON numbers,
 booleans, strings, and null.

4.5.1. Numbers, Booleans and Null

 The rules for booleans and null are the simplest and take the
 following forms:

 true
 false
 boolean
 null

 Figure 14

 Rules for numbers can specify the number be either an integer or
 floating point number:

 integer
 float
 double

 Figure 15

 The keyword ’float’ represents a single precision IEEE-754 floating
 point number represented in decimal. The keyword ’double’ represents
 a double precision IEEE-754 floating point number represented in
 decimal format.

 Numbers may also be specified as an absolute value or a range of
 possible values, where a range may be specified using a minimum,
 maximum, or both:

 n
 n..m
 ..m
 n..
 n.f
 n.f..m.f
 ..m.f
 n.f..

 Figure 16

 When specifying a minimum and a maximum, both must either be an
 integer or a floating point number. Thus to specify a floating point

Newton & Cordell Expires April 1, 2018 [Page 12]

Internet-Draft JSON Content Rules September 2017

 number between zero and ten a definition of the following form is
 used:

 0.0..10.0

 Figure 17

 Integers may also be specified as ranges using bit lengths preceded
 by the ’int’ or ’uint’ words (i.e. ’int8’, ’uint16’). The ’int’
 prefix specifies the integer as being signed whereas the ’uint’
 prefix specifies the integer as being unsigned.

 ; 0..255
 uint8

 ; -32768..32767
 int16

 ; 0..65535
 uint16

 ; -9223372036854775808..9223372036854775807
 int64

 ; 0..18446744073709551615
 uint64

 Figure 18

4.5.2. Strings

 JCR provides a large number of data types to define the contents of
 JSON strings. Generically, a string may be specified using the word
 ’string’. String literals may be specified using a double quote
 character followed by the literal content followed by another double
 quote. And regular expressions may be specified by enclosing a
 regular expression within the forward slash (’/’) character.

Newton & Cordell Expires April 1, 2018 [Page 13]

Internet-Draft JSON Content Rules September 2017

 ; any string
 string

 ; a string literal
 "she sells sea shells"

 ; a regular expression
 /^she sells .*/

 Figure 19

 Regular expressions are not implicitly anchored and therefore must be
 explicitly anchored if necessary.

 A string can be specified as a URI [RFC3986] using the word ’uri’,
 but also may be more narrowly scoped to a URI of a specific scheme.
 Specific URI schemes are specified with the word ’uri’ followed by
 two period characters (’..’) followed by the URI scheme.

 ; any URI
 uri

 ;a URI narrowed for an HTTPS uri
 uri..https

 Figure 20

 IP addresses may be specified with either the word ’ipv4’ for IPv4
 addresses [RFC1166] or the word ’ipv6’ for IPv6 addresses [RFC5952].
 Fully qualified A-label and U-label domain names may be specified
 with the words ’fqdn’ and ’idn’.

 Dates and time can be specified as formats found in RFC 3339
 [RFC3339]. The word ’date’ corresponds to the full-date ABNF rule,
 the word ’time’ corresponds to the full-time ABNF rule, and the word
 ’datetime’ corresponds to the ’date-time’ ABNF rule.

 Email addresses formatted according to RFC 5322 [RFC5322] may be
 specified using the ’email’ word, and E.123 phone numbers may be
 specified using the word ’phone’.

Newton & Cordell Expires April 1, 2018 [Page 14]

Internet-Draft JSON Content Rules September 2017

 ;IP addresses
 ipv4
 ipv6
 ipaddr

 ;domain names
 fqdn
 idn

 ; RFC 3339 full-date
 date
 ; RFC 3339 full-time
 time
 ; RFC 3339 date-time
 datetime

 ; RFC 5322 email address
 email

 ; phone number
 phone

 Figure 21

 Binary data can be specified in string form using the encodings
 specified in RFC 4648 [RFC4648]. The word ’hex’ corresponds to
 base16, while ’base32’, ’base32hex’, ’base64’, and ’base64url’
 correspond with their RFC 4648 counterparts accordingly.

 ; RFC 4648 base16
 hex

 ; RFC 4648 base32
 base32

 ; RFC 4648 base32hex
 base32hex

 ; RFC 4648 base64
 base64

 ; RFC 4648 base64url
 base64url

 Figure 22

Newton & Cordell Expires April 1, 2018 [Page 15]

Internet-Draft JSON Content Rules September 2017

4.6. Any Type

 It is possible to specify that a value can be of any type allowable
 by JSON using the word ’any’. The ’any’ type specifies any primitive
 type, array, or object.

4.7. Member Specifications

 Member specifications define members of JSON objects. Unlike other
 type specifications, member specifications cannot be root rules and
 must be part of an object specification or preceded by a rule name
 assignment.

 Member specifications consist of a member name specification followed
 by a colon character (’:’) followed by either a subordinate
 component, which is either a rule name or a primitive, object, array,
 or group specification. Member name specifications can be given
 either as a quoted string using double quotes or as a regular
 expression using forward slash (’/’) characters. Regular expressions
 are not implicitly anchored and therefore must have explicit anchors
 if needed.

 ;member name will exactly match "locationURI"
 $location_uri = "locationURI" : uri

 ;member name will match "eth0", "eth1", ... "eth9"
 $iface_mappings = /^eth[0-9]$/ : ipv4

 Figure 23

4.8. Object Specifications

 Object specifications define JSON objects and are composed of zero or
 more subordinate components, each of which can be either a rule name,
 member specification, or group specification. The subordinate
 components are enclosed at the start with a left curly brace
 character (’{’) and at the end with a right curly brace character
 (’}’).

 Evaluation of the subordinate components of object specifications is
 as follows:

 o No order is implied for the members of the object being evaluated.

 o Subordinate components of the object specification are evaluated
 in the order they appear.

Newton & Cordell Expires April 1, 2018 [Page 16]

Internet-Draft JSON Content Rules September 2017

 o Each member of the object being evaluated can only match one
 subordinate component.

 o Any members not matched against a subordinate component are
 ignored.

 The following examples illustrate matching of JSON objects to JCR
 object specifications.

 As order is not implied for the members of objects under evaluation,
 the following rule will match the JSON in Figure 25 and Figure 26.

 { "locationUri" : uri, "statusCode" : integer }

 Figure 24

 { "locationUri" : "http://example.com", "statusCode" : 200 }

 Figure 25

 { "statusCode" : 200, "locationUri" : "http://example.com" }

 Figure 26

Newton & Cordell Expires April 1, 2018 [Page 17]

Internet-Draft JSON Content Rules September 2017

 Because subordinate components of an object specification are
 evaluated in the order in which they are specified (i.e. left to
 right, top to bottom) and object members can only match one
 subordinate component of an object specification, the rule o1 below
 will not match against the JSON in Figure 28 but the rule o2 below
 will match it.

 ; zero or more members that match "p0", "p1", etc
 ; and a member that matches "p1"
 $o1 = { /^p\d+$/ : integer *, "p1" : integer }

 ; a member that matches "p1" and
 ; zero or more members that match "p0", "p1", etc
 $o2 = { "p1" : integer, /^p\d+$/ : integer * }

 The first subordinate of rule o1 specifies that an object can have
 zero or more members (that is the meaning of "*", see Section 4.13)
 where the member name is the letter ’p’ followed by a number (e.g.
 "p0", "p1", "p2"), and the second rule specifies a member with the
 exact member name of "p1". Rule o2 has the exact same member
 specifications but in the opposite order. Figure 28 does not match
 rule o1 because all of the members match the first subordinate rule
 leaving none to match the second subordinate rule. However, rule o2
 does match because the first subordinate rule matches only one member
 of the JSON object allowing the second subordinate rule to match the
 other member of the JSON object.

 Figure 27

 { "p0" : 1, "p1" : 2 }

 Figure 28

 As stated above, members of objects which do not match a rule are
 ignored. The reason for this validation model is due to the nature
 of the typical access model to JSON objects in many programming
 languages, where members of the object are obtained by referencing
 the member name. Therefore extra members may exist without harm.

 However, some specifications may need to restrict the members of a
 JSON object to a known set. To construct a rule specifying that no
 extra members are expected, the @{not} annotation (see Section 4.14)
 may be used with a "match-all" regular expression as the last
 subordinate component of the object specification.

Newton & Cordell Expires April 1, 2018 [Page 18]

Internet-Draft JSON Content Rules September 2017

 The following rule will match the JSON object in Figure 30 but will
 not match the JSON object in Figure 31.

 { "foo" : 1, "bar" : 2, @{not} // : any + }

 Figure 29

 { "foo" : 1, "bar" : 2 }

 Figure 30

 { "foo" : 1, "bar" : 2, "baz" : 3 }

 Figure 31

 This works because subordinate components are evaluated in the order
 they appear in the object rule, and the last component accepts any
 member with any type but fails to validate if one or more of those
 components are found due to the @{not} annotation.

4.9. Array Specifications

 Array specifications define JSON arrays and are composed of zero or
 more subordinate components, each of which can either be a rule name
 or a primitive, array, object or group specification. The
 subordinate components are enclosed at the start with a left square
 brace character (’[’) and at the end with a right square brace
 character (’]’).

 Evaluation of the subordinate components of array specifications is
 as follows:

 o The order of array items is implied unless the @{unordered}
 annotation is present.

 o Subordinate components of the array specification are evaluated in
 the order they appear.

 o Each item of the array being evaluated can only match one
 subordinate component of the array specification.

 o If any items of the array are not matched, then the array does not
 match the array specification.

 These rules are further explained in the examples below.

Newton & Cordell Expires April 1, 2018 [Page 19]

Internet-Draft JSON Content Rules September 2017

 [0..1024, 0..980]

 Figure 32

 Unlike object specifications, order is implied in array
 specifications by default. That is, the first subordinate component
 will match the first element of the array, the second subordinate
 component will match the second element of the array, and so on.

 Take for example the following ruleset:

 ; the first element of the array is to be a string
 ; the second element of the array is to be an integer
 $a1 = [string, integer]

 ; the first element of the array is to be an integer
 ; the second element of the array is to be a string
 $a2 = [integer, string]

 Figure 33

 It defines two rules, a1 and a2. The array in the following JSON
 will not match a1, but will match a2.

 [24, "Bob Smurd"]

 Figure 34

 If an array has more elements than can be matched from the array
 specification, the array does not match the array specification. Or
 stated differently, an array with unmatched elements does not
 validate. Using the example array rule a2 from above, the following
 array does not match because the last element of the array does not
 match any subordinate component:

 [24, "Bob Smurd", "http://example.com/bob_smurd"]

 Figure 35

 To allow an array to contain any value after guaranteeing that it
 contains the necessary items, the last subordinate component of the
 array specification should accept any item:

Newton & Cordell Expires April 1, 2018 [Page 20]

Internet-Draft JSON Content Rules September 2017

 ; the first element of the array is to be an integer
 ; the second element of the array is to be a string
 ; anything else can follow
 $a3 = [integer, string, any *]

 The JSON array in Figure 35 will validate against the a3 rule in this
 example.

 Figure 36

4.9.1. Unordered Array Specifications

 Array specifications can be made to behave in a similar fashion to
 object specifications with regard to the order of matching with the
 @{unordered} annotation.

 In the ruleset below, a1 and a2 have the same subordinate components
 given in the same order. a2 is annotated with the @{unordered}
 annotation.

 $a1 = [string, integer]
 $a2 = @{unordered} [string, integer]

 Figure 37

 The JSON array below does not match a1 but does match a2.

 [24, "Bob Smurd"]

 Figure 38

 Like ordered array specifications, the subordinate components in an
 unordered array specification are evaluated in the order they are
 specified. The difference is that they need not match an element of
 the array in the same position as given in the array specification.

 Finally, like ordered array specifications, unordered array
 specifications also require that all elements of the array be matched
 by a subordinate component. If the array has more elements than can
 be matched, the array does not match the array specification.

4.10. Group Specifications

 Unlike the other type specifications, group specifications have no
 direct tie with JSON syntax. Group specifications simply group
 together their subordinate components. Group specifications enclose
 one or more subordinate components with the parenthesis characters.

Newton & Cordell Expires April 1, 2018 [Page 21]

Internet-Draft JSON Content Rules September 2017

 Group specifications and any nesting of group specifications, must
 conform to the allowable set of type specifications of the type
 specifications in which they are contained. For example, a group
 specification inside of an array specification may not contain a
 member specification since member specifications are not allowed as
 direct subordinates of array specifications (arrays contain values,
 not object members in JSON). Likewise, a group specification
 referenced inside an object specification must only contain member
 specifications (JSON objects may only contain object members).

 The following is an example of a group specification:

 $the_bradys = [$parents, $children]

 $children = ("Greg", "Marsha", "Bobby", "Jan")

 $parents = ("Mike", "Carol")

 Figure 39

 Like the subordinate components of array and object specifications,
 the subordinate components of a group specification are evaluated in
 the order they appear.

4.11. Ordered and Unordered Groups in Arrays

 Section 4.9.1 specifies that arrays can be evaluated by the order of
 the items in the array or can be evaluated without order.
 Section 4.10 specifies that arrays may have group rules as
 subordinate components.

 The evaluation of a group specification inside an array specification
 inherits the ordering property of the array specification. If the
 array specification is unordered, then the items of the group
 specification are also considered to be unordered. And if the array
 specification is ordered, then the items of the group specification
 are also considered to be ordered.

4.12. Sequence and Choice Combinations in Array, Object, and Group
 Specifications

 Combinations of subordinate components in array, object, and group
 specifications can be specified as either a sequence ("and") or a
 choice ("or"). A sequence is a subordinate component followed by the
 comma character (’,’) followed by another subordinate component. A
 choice is a subordinate component followed by a pipe character (’|’)
 followed by another subordinate component.

Newton & Cordell Expires April 1, 2018 [Page 22]

Internet-Draft JSON Content Rules September 2017

 ; sequence ("and")
 ["this" , "that"]

 ; choice ("or")
 ["this" | "that"]

 Figure 40

 Sequence and choice combinations cannot be mixed, and group
 specifications must be used to explicitly declare precedence between
 a sequence and a choice. Therefore, the following is illegal:

 ["this", "that" | "the_other"]

 Figure 41

 The example above should be expressed as:

 ["this", ("that" | "the_other")]

 Figure 42

 NOTE: A future specification will clarify the choice (’|’)
 operation as inclusive or, exclusive or ("xor") or otherwise. At
 present readers should assume the choice (’|’) operator is an
 inclusive or. However, for objects and unordered arrays that is
 not ideal, nor is xor. We are in the process of defining an
 algorithm to "rewrite" choices of rules for use with inclusive or
 which is more suitable for the data model of JSON.

4.13. Repetition in Array, Object, and Group Specifications

 Evaluation of subordinate components in array, object, and group
 specifications may be succeeded by a repetition expression denoting
 how many times the subordinate component should be evaluated.
 Repetition expressions are specified using a Kleene symbol (’?’, ’+’,
 or ’*’) or with the ’*’ symbol succeeded by specific minimum and/or
 maximum values, each being non-negative integers. Repetition
 expressions may also be appended with a step expression, which is the
 ’%’ symbol followed by a positive integer.

 When no repetition expression is present, both the minimum and
 maximum are 1.

 A minimum and maximum can be expressed by giving the minimum followed
 by two period characters (’..’) followed by the maximum, with either
 the minimum or maximum being optional. When the minimum is not

Newton & Cordell Expires April 1, 2018 [Page 23]

Internet-Draft JSON Content Rules September 2017

 explicitly specified, it is assumed to be zero. When the maximum is
 not explicitly specified, it is assumed to be positive infinity.

 ; exactly 2 octets
 $word = [$octet *2]
 $octet =: int8

 ; 1 to 13 name servers
 [$name_servers *1..13]
 $name_servers =: fqdn

 ; 0 to 99 ethernet addresses
 { /^eth.*/ : $mac_addr *..99 }
 $mac_addr =: hex

 ; four or more bytes
 [$octet *4..]

 Figure 43

 The allowable Kleene operators are the question mark character (’?’)
 which specifies zero or one (i.e. optional), the plus character (’+’)
 which specifies one or more, and the asterisk character (’*’) which
 specifies zero or more.

 ; age is optional
 { "name" : string, "age" : integer ? }

 ; zero or more errors
 $error_set = (string *)

 ; 1 or more integer values
 [integer +]

 Figure 44

 A repetition step expression may follow a minimum to maximum
 expression or the zero or more Kleene operator or the one or more
 Kleene operator.

 o When the repetition step follows a minimum to maximum expression
 or the zero or more Kleene operator (’*’), it specifies that the
 total number of repetitions present in the JSON instance being
 validated minus the minimum repetition value must be a multiple of
 the repetition step (e.g. the total repetitions minus the minimum
 repetition value must be divisible by the step value with a
 remainder of zero).

Newton & Cordell Expires April 1, 2018 [Page 24]

Internet-Draft JSON Content Rules September 2017

 o When the repetition step follows a one or more Kleene operator
 (’+’), the minimum repetition value is set equal to the repetition
 step value and the total number of repetitions minus the step
 value must be a multiple of the repetition step value.

 The following is an example for repetition steps in repetition
 expressions.

 ; there must be at least 2 name servers
 ; there may be no more than 12 name servers
 ; there must be an even number of name servers
 ; e.g. 2,4,6,8,10,12
 [$name_servers *2..12%2]
 $name_servers =: fqdn

 ; minimum is zero
 ; maximum is 100
 ; must be an even number
 { /^eth.*/ : $mac_addr *..100%2 }
 $mac_addr =: hex

 ; at least 32 octets
 ; must be be in groups of 16
 ; e.g. 32, 48, 64 etc
 [$octet *32..%16]
 $octet =: int8

 ; if there are to be error sets,
 ; their number must be divisible by 4
 ; e.g. 0, 4, 8, 12 etc
 $error_set = (string *%4)

 ; Throws of a pair of dice must be divisible by 2
 ; e.g. 2, 4, 6 etc
 $dice_throws = (1..6 +%2)

 Figure 45

4.14. Negating Evaluation

 The evaluation of a rule can be changed with the @{not} annotation.
 With this annotation, a rule that would otherwise match does not, and
 a rule that would not have matched does.

Newton & Cordell Expires April 1, 2018 [Page 25]

Internet-Draft JSON Content Rules September 2017

 ; match anything that isn’t the integer 2
 $not_two = [@{not} 2]

 ; error if one of the status values is "fail"
 $status = @{not} @{unordered} ["fail", string *]

 Figure 46

5. Directives

 Directives modify the processing of a ruleset. There are two forms
 of the directive, the single line directive and the multi-line
 directive.

 Single line directives appear on their own line in a ruleset, begin
 with a hash character (’#’) and are terminated by the end of the
 line. They take the following form:

 # directive_name parameter_1 parameter_2 ...

 Figure 47

 Multi-line directives also appear on their own lines, but may span
 multiple lines. They begin with the character sequence "#{" and end
 with "}". The take the following form:

 #{ directive_name
 parameter_1 paramter_2
 parameter_3
 ...
 }

 Figure 48

 This specification defines the directives "jcr-version", "ruleset-
 id", and "import", but other directives may be defined.

5.1. jcr-version

 This directive declares that the ruleset complies with a specific
 version of this standard. The version is expressed as a major
 integer followed by a period followed by a minor integer.

 # jcr-version 0.7

 Figure 49

Newton & Cordell Expires April 1, 2018 [Page 26]

Internet-Draft JSON Content Rules September 2017

 The major.minor number signifying compliance with this document is
 "0.7". Upon publication of this specification as an IETF proposed
 standard, it will be "1.0".

 # jcr-version 1.0

 Figure 50

 Ruleset authors are advised to place this directive as the first line
 of a ruleset.

 This directive may have optional extension identifiers following the
 version number. Each extension identifiers is preceded by the plus
 (’+’) character and separated by white space. The format of
 extension identifiers is specific to the extension, but it is
 recommended that they are terminated by a version number.

 # jcr-version 1.0 +co-constraints-1.2 +jcr-doc-1.0

 Figure 51

5.2. ruleset-id

 This directive identifies a ruleset to rule processors. It takes the
 form:

 # ruleset-id identifier

 Figure 52

 An identifier can be a URL (e.g. http://example.com/foo), an inverted
 domain name (e.g. com.example.foo) or any other form that conforms to
 the JCR ABNF syntax that a ruleset author deems appropriate. To a
 JCR processor the identifier is treated as an opaque, case-sensitive
 string.

5.3. import

 The import directive specifies that another ruleset is to have its
 rules evaluated in addition to the ruleset where the directive
 appears.

 The following is an example:

 # import http://example.com/rfc9999 as rfc9999

 Figure 53

Newton & Cordell Expires April 1, 2018 [Page 27]

Internet-Draft JSON Content Rules September 2017

 The rule names of the ruleset to be imported may be referenced by
 prepending the alias followed by a period character (’.’) followed by
 the rule name (i.e. "alias.name"). To continue the example above, if
 the ruleset at http://example.com/rfc9999 were to have a rule named
 ’encoding’, rules in the ruleset importing it can refer to that rule
 as ’rfc9999.encoding’.

6. Tips and Tricks

6.1. Any Member with Any Value

 Because member names may be specified with regular expressions, it is
 possible to construct a member rule that matches any member name. As
 an example, the following defines an object with a member with any
 name that has a value that is a string:

 { // : string }

 Figure 54

 The JSON below matches the above rule.

 { "foo" : "bar" }

 Figure 55

 Likewise, the JSON below also matches the same rule.

 { "fuzz" : "bazz" }

 Figure 56

 Constructing an object with a member of any name with any type would
 therefore take the form:

 { // : any }

 Figure 57

 The above rule matches not only the two JSON objects above, but the
 JSON object below.

 { "fuzz" : 1234 }

 Figure 58

Newton & Cordell Expires April 1, 2018 [Page 28]

Internet-Draft JSON Content Rules September 2017

6.2. Lists of Values

 Group specifications may be used to create enumerated lists of
 primitive data types, because primitive specifications may contain a
 group specification, which may have multiple primitive
 specifications. Because a primitive specification must resolve to a
 single data type, the group specification must only contain choice
 combinations.

 Consider the following examples:

 ; either an IPv4 or IPv6 adress
 $address =: (ipv4 | ipv6)

 ; allowable fruits
 $fruits =: ("apple" | "banana" | "pear")

 Figure 59

6.3. Groups in Arrays

 Groups may be a subordinate component of array specifications:

 [(ipv4 | ipv6), integer]

 Figure 60

 Unlike primitive specifications, subordinate group specifications in
 array specifications may have sequence combinations and contain any
 type specification.

 ; a group in an array
 [($first_name, $middle_name ?, $last_name), $age]

 ; a group referenced from an array
 [$name, $age]
 $name = ($first_name, $middle_name ?, $last_name)

 $first_name =: string
 $middle_name =: string
 $last_name =: string
 $age =: 0..

 Figure 61

Newton & Cordell Expires April 1, 2018 [Page 29]

Internet-Draft JSON Content Rules September 2017

6.4. Groups in Objects

 Groups may be a subordinate component of object specifications:
 Subordinate group specifications in object specifications may have
 sequence combinations but must only contain member specifications.

 ; a group in an object
 { ($title, $date, $author), $paragraph + }

 ; a group referenced from an object
 { $front_matter, $paragraph + }
 $front_matter = ($title, $date, $author)

 $title = "title" : string
 $date = "date" : date
 $author = "author" : [string *]
 $paragraph = /p[0-9]*/ : string

 Figure 62

 NOTE: A future specification will clarify the choice (’|’)
 operation as inclusive or, exclusive or ("xor") or otherwise. At
 present readers should assume the choice (’|’) operator is an
 inclusive or. We are in the process of defining an algorithm to
 "rewrite" choices of rules for use with inclusive or which is more
 suitable for the data model of JSON. Such a change will impact
 the guidance given below.

 When using groups to use both sequences and choices of member
 specifications, consideration must be given to the processing of
 object specifications where by unmatched member specifications are
 ignored (see Figure 23).

 A casual reading of this rule might lead a reader to believe that the
 JSON object in Figure 64 would not match, however it does because the
 extra member (either "foo" or "baz") is not matched but is ignored.

 { "bar":string, ("foo":integer | "baz":string) }

 Figure 63

 { "bar":"thing", "foo":2, "baz": "thingy" }

 Figure 64

 The rule in Figure 63 must be modified to either match all extra
 rules, as in Figure 65, or the logic of the rules must be rewritten

Newton & Cordell Expires April 1, 2018 [Page 30]

Internet-Draft JSON Content Rules September 2017

 to explicitly negate the presence of the unwanted members, as in
 Figure 66.

 { "bar":string, ("foo":integer | "baz":string), @{not} //:any + }

 Figure 65

 { "bar":string,
 (("foo":integer , @{not} "baz":string) |
 ("baz":string , @{not} "foo":integer)
) }

 Figure 66

6.5. Group Rules as Macros

 The syntax for group specifications accommodates one ore more
 subordinate components and a repetition expression for each. Other
 than grouping multiple rules, a group specification can be used as a
 macro definition for a single rule.

 $paragraphs = (/p[0-9]*/ : string +)

 Figure 67

6.6. Object Mixins

 Group rules can be used to create object mixins, a pattern for
 writing data models similar in style to object derivation in some
 programming languages. In the example in below, both obj1 and obj2
 have a members "foo" and "fob" with obj1 having the additional member
 "bar" and obj2 having the additional member "baz".

 $mixin_group = ("foo" : integer, "fob" : uri)

 $obj1 = { $mixin_group, "bar" : string }

 $obj2 = { $mixin_group, "baz" : string }

 Figure 68

6.7. Subordinate Dependencies

 In object and array specifications, there may be situations in which
 it is necessary to condition the existence of a subordinate component
 on the existence of a sibling subordinate component. In other words,
 example_two should only be evaluated if example_one evaluates
 positively. Or put another way, a member of an object or an item of

Newton & Cordell Expires April 1, 2018 [Page 31]

Internet-Draft JSON Content Rules September 2017

 an array may be present only on the condition that another member or
 item is present.

 In the following example, the referrer_uri member can only be present
 if the location_uri member is present.

 ; $referrer_uri can only be present if
 ; $location_uri is present
 { ($location_uri, $referrer_uri?)? }

 $location_uri = "locationURI" : uri
 $referrer_uri = "referrerURI" : uri

 Figure 69

7. Implementation Status

 This section records the status of known implementations of the
 protocol defined by this specification at the time of posting of this
 Internet-Draft, and is based on a proposal described in [RFC7492] .
 The description of implementations in this section is intended to
 assist the IETF in its decision processes in progressing drafts to
 RFCs. Please note that the listing of any individual implementation
 here does not imply endorsement by the IETF. Furthermore, no effort
 has been spent to verify the information presented here that was
 supplied by IETF contributors. This is not intended as, and must not
 be construed to be, a catalog of available implementations or their
 features. Readers are advised to note that other implementations may
 exist.

 According to [RFC7492] , "this will allow reviewers and working
 groups to assign due consideration to documents that have the benefit
 of running code, which may serve as evidence of valuable
 experimentation and feedback that have made the implemented protocols
 more mature. It is up to the individual working groups to use this
 information as they see fit".

7.1. JCR Validator

 The JCR Validator, written in Ruby, currently implements all portions
 of this specification, and has been used extensively to prototype
 various aspects of JCR under consideration. It’s development has
 gone hand-in-hand with this specification.

 This software is primarily produced by the American Registry for
 Internet Numbers (ARIN) and freely distributable under the ISC
 license.

Newton & Cordell Expires April 1, 2018 [Page 32]

Internet-Draft JSON Content Rules September 2017

 Source code for this software is available on GitHub at
 <https://github.com/arineng/jcrvalidator>. This software is also
 easily obtained as a Ruby Gem through the Ruby Gem system.

7.2. Codalogic JCR Parser

 The Codalogic JCR Parser is a C++ implementation of a JCR parsing
 engine, and is a work in progress. It is targeted for the Windows
 platform.

 This software is produced by Codalogic Ltd and freely distributable
 under the Gnu LGPL v3 license.

 Source code is availabe on GitHub at <https://github.com/codalogic/
 cl-jcr-parser>.

7.3. JCR Java

 JCR Java is a work in progress and currently only implements the
 parsing of JCR rulesets according to the ABNF using a custom parsing
 framework.

 This software is produced by the American Registry for Internet
 Numbers (ARIN) and freely distributable under the MIT license.

 Source code is available on BitBucket at
 <https://bitbucket.org/anewton_1998/jcr_java>.

8. ABNF Syntax

 The following ABNF describes the syntax for JSON Content Rules. A
 text file containing these ABNF rules can be downloaded from
 [JCR_ABNF].

 jcr = *(sp-cmt / directive / root-rule / rule)

 sp-cmt = spaces / comment
 spaces = 1*(WSP / CR / LF)
 DSPs = ; Directive spaces
 1*WSP / ; When in one-line directive
 1*sp-cmt ; When in muti-line directive
 comment = ";" *comment-char comment-end-char
 comment-char = HTAB / %x20-10FFFF
 ; Any char other than CR / LF
 comment-end-char = CR / LF

 directive = "#" (one-line-directive / multi-line-directive)
 one-line-directive = [DSPs]

Newton & Cordell Expires April 1, 2018 [Page 33]

Internet-Draft JSON Content Rules September 2017

 (directive-def / one-line-tbd-directive-d)
 *WSP eol
 multi-line-directive = "{" *sp-cmt
 (directive-def /
 multi-line-tbd-directive-d)
 *sp-cmt "}"
 directive-def = jcr-version-d / ruleset-id-d / import-d
 jcr-version-d = jcr-version-kw DSPs major-version
 "." minor-version
 *(DSPs "+" [DSPs] extension-id)
 major-version = non-neg-integer
 minor-version = non-neg-integer
 extension-id = ALPHA *not-space
 ruleset-id-d = ruleset-id-kw DSPs ruleset-id
 import-d = import-kw DSPs ruleset-id
 [DSPs as-kw DSPs ruleset-id-alias]
 ruleset-id = ALPHA *not-space
 not-space = %x21-10FFFF
 ruleset-id-alias = name
 one-line-tbd-directive-d = directive-name
 [WSP one-line-directive-parameters]
 directive-name = name
 one-line-directive-parameters = *not-eol
 not-eol = HTAB / %x20-10FFFF
 eol = CR / LF
 multi-line-tbd-directive-d = directive-name
 [1*sp-cmt multi-line-directive-parameters]
 multi-line-directive-parameters = multi-line-parameters
 multi-line-parameters = *(comment / q-string / regex /
 not-multi-line-special)
 not-multi-line-special = spaces / %x21 / %x23-2E / %x30-3A /
 %x3C-7C / %x7E-10FFFF ; not ", /, ; or }

 root-rule = value-rule / group-rule

 rule = annotations "$" rule-name *sp-cmt
 "=" *sp-cmt rule-def

 rule-name = name
 target-rule-name = annotations "$"
 [ruleset-id-alias "."]
 rule-name
 name = ALPHA *(ALPHA / DIGIT / "-" / "-")

 rule-def = member-rule / type-designator rule-def-type-rule /
 array-rule / object-rule / group-rule /
 target-rule-name
 type-designator = type-kw 1*sp-cmt / ":" *sp-cmt

Newton & Cordell Expires April 1, 2018 [Page 34]

Internet-Draft JSON Content Rules September 2017

 rule-def-type-rule = value-rule / type-choice
 value-rule = primitive-rule / array-rule / object-rule
 member-rule = annotations
 member-name-spec *sp-cmt ":" *sp-cmt type-rule
 member-name-spec = regex / q-string
 type-rule = value-rule / type-choice / target-rule-name
 type-choice = annotations "(" type-choice-items
 *(choice-combiner type-choice-items) ")"
 explicit-type-choice = type-designator type-choice
 type-choice-items = *sp-cmt (type-choice / type-rule) *sp-cmt

 annotations = *("@{" *sp-cmt annotation-set *sp-cmt "}"
 *sp-cmt)
 annotation-set = not-annotation / unordered-annotation /
 root-annotation / tbd-annotation
 not-annotation = not-kw
 unordered-annotation = unordered-kw
 root-annotation = root-kw
 tbd-annotation = annotation-name [spaces annotation-parameters]
 annotation-name = name
 annotation-parameters = multi-line-parameters

 primitive-rule = annotations primitive-def
 primitive-def = string-type / string-range / string-value /
 null-type / boolean-type / true-value /
 false-value / double-type / float-type /
 float-range / float-value /
 integer-type / integer-range / integer-value /
 sized-int-type / sized-uint-type / ipv4-type /
 ipv6-type / ipaddr-type / fqdn-type / idn-type /
 uri-type / phone-type / email-type /
 datetime-type / date-type / time-type /
 hex-type / base32hex-type / base32-type /
 base64url-type / base64-type / any
 null-type = null-kw
 boolean-type = boolean-kw
 true-value = true-kw
 false-value = false-kw
 string-type = string-kw
 string-value = q-string
 string-range = regex
 double-type = double-kw
 float-type = float-kw
 float-range = float-min ".." [float-max] / ".." float-max
 float-min = float
 float-max = float
 float-value = float
 integer-type = integer-kw

Newton & Cordell Expires April 1, 2018 [Page 35]

Internet-Draft JSON Content Rules September 2017

 integer-range = integer-min ".." [integer-max] /
 ".." integer-max
 integer-min = integer
 integer-max = integer
 integer-value = integer
 sized-int-type = int-kw pos-integer
 sized-uint-type = uint-kw pos-integer
 ipv4-type = ipv4-kw
 ipv6-type = ipv6-kw
 ipaddr-type = ipaddr-kw
 fqdn-type = fqdn-kw
 idn-type = idn-kw
 uri-type = uri-kw [".." uri-scheme]
 phone-type = phone-kw
 email-type = email-kw
 datetime-type = datetime-kw
 date-type = date-kw
 time-type = time-kw
 hex-type = hex-kw
 base32hex-type = base32hex-kw
 base32-type = base32-kw
 base64url-type = base64url-kw
 base64-type = base64-kw
 any = any-kw

 object-rule = annotations "{" *sp-cmt
 [object-items *sp-cmt] "}"
 object-items = object-item [1*(sequence-combiner object-item) /
 1*(choice-combiner object-item)]
 object-item = object-item-types *sp-cmt [repetition *sp-cmt]
 object-item-types = object-group / member-rule / target-rule-name
 object-group = annotations "(" *sp-cmt [object-items *sp-cmt] ")"

 array-rule = annotations "[" *sp-cmt [array-items *sp-cmt] "]"
 array-items = array-item [1*(sequence-combiner array-item) /
 1*(choice-combiner array-item)]
 array-item = array-item-types *sp-cmt [repetition *sp-cmt]
 array-item-types = array-group / type-rule / explicit-type-choice
 array-group = annotations "(" *sp-cmt [array-items *sp-cmt] ")"

 group-rule = annotations "(" *sp-cmt [group-items *sp-cmt] ")"
 group-items = group-item [1*(sequence-combiner group-item) /
 1*(choice-combiner group-item)]
 group-item = group-item-types *sp-cmt [repetition *sp-cmt]
 group-item-types = group-group / member-rule /
 type-rule / explicit-type-choice
 group-group = group-rule

Newton & Cordell Expires April 1, 2018 [Page 36]

Internet-Draft JSON Content Rules September 2017

 sequence-combiner = "," *sp-cmt
 choice-combiner = "|" *sp-cmt

 repetition = optional / one-or-more /
 repetition-range / zero-or-more
 optional = "?"
 one-or-more = "+" [repetition-step]
 zero-or-more = "*" [repetition-step]
 repetition-range = "*" *sp-cmt (
 min-max-repetition / min-repetition /
 max-repetition / specific-repetition)
 min-max-repetition = min-repeat ".." max-repeat
 [repetition-step]
 min-repetition = min-repeat ".." [repetition-step]
 max-repetition = ".." max-repeat [repetition-step]
 min-repeat = non-neg-integer
 max-repeat = non-neg-integer
 specific-repetition = non-neg-integer
 repetition-step = "%" step-size
 step-size = non-neg-integer

 integer = "0" / ["-"] pos-integer
 non-neg-integer = "0" / pos-integer
 pos-integer = digit1-9 *DIGIT

 float = [minus] int frac [exp]
 ; From RFC 7159 except ’frac’ required
 minus = %x2D ; -
 plus = %x2B ; +
 int = zero / (digit1-9 *DIGIT)
 digit1-9 = %x31-39 ; 1-9
 frac = decimal-point 1*DIGIT
 decimal-point = %x2E ; .
 exp = e [minus / plus] 1*DIGIT
 e = %x65 / %x45 ; e E
 zero = %x30 ; 0

 q-string = quotation-mark *char quotation-mark
 ; From RFC 7159
 char = unescaped /
 escape (
 %x22 / ; " quotation mark U+0022
 %x5C / ; \ reverse solidus U+005C
 %x2F / ; / solidus U+002F
 %x62 / ; b backspace U+0008
 %x66 / ; f form feed U+000C
 %x6E / ; n line feed U+000A
 %x72 / ; r carriage return U+000D

Newton & Cordell Expires April 1, 2018 [Page 37]

Internet-Draft JSON Content Rules September 2017

 %x74 / ; t tab U+0009
 %x75 4HEXDIG) ; uXXXX U+XXXX
 escape = %x5C ; \
 quotation-mark = %x22 ; "
 unescaped = %x20-21 / %x23-5B / %x5D-10FFFF

 regex = "/" *(escape "/" / not-slash) "/"
 [regex-modifiers]
 not-slash = HTAB / CR / LF / %x20-2E / %x30-10FFFF
 ; Any char except "/"
 regex-modifiers = *("i" / "s" / "x")

 uri-scheme = 1*ALPHA

 ;; Keywords
 any-kw = %x61.6E.79 ; "any"
 as-kw = %x61.73 ; "as"
 base32-kw = %x62.61.73.65.33.32 ; "base32"
 base32hex-kw = %x62.61.73.65.33.32.68.65.78 ; "base32hex"
 base64-kw = %x62.61.73.65.36.34 ; "base64"
 base64url-kw = %x62.61.73.65.36.34.75.72.6C ; "base64url"
 boolean-kw = %x62.6F.6F.6C.65.61.6E ; "boolean"
 date-kw = %x64.61.74.65 ; "date"
 datetime-kw = %x64.61.74.65.74.69.6D.65 ; "datetime"
 double-kw = %x64.6F.75.62.6C.65 ; "double"
 email-kw = %x65.6D.61.69.6C ; "email"
 false-kw = %x66.61.6C.73.65 ; "false"
 float-kw = %x66.6C.6F.61.74 ; "float"
 fqdn-kw = %x66.71.64.6E ; "fqdn"
 hex-kw = %x68.65.78 ; "hex"
 idn-kw = %x69.64.6E ; "idn"
 import-kw = %x69.6D.70.6F.72.74 ; "import"
 int-kw = %x69.6E.74 ; "int"
 integer-kw = %x69.6E.74.65.67.65.72 ; "integer"
 ipaddr-kw = %x69.70.61.64.64.72 ; "ipaddr"
 ipv4-kw = %x69.70.76.34 ; "ipv4"
 ipv6-kw = %x69.70.76.36 ; "ipv6"
 jcr-version-kw = %x6A.63.72.2D.76.65.72.73.69.6F.6E ; "jcr-version"
 not-kw = %x6E.6F.74 ; "not"
 null-kw = %x6E.75.6C.6C ; "null"
 phone-kw = %x70.68.6F.6E.65 ; "phone"
 root-kw = %x72.6F.6F.74 ; "root"
 ruleset-id-kw = %x72.75.6C.65.73.65.74.2D.69.64 ; "ruleset-id"
 string-kw = %x73.74.72.69.6E.67 ; "string"
 time-kw = %x74.69.6D.65 ; "time"
 true-kw = %x74.72.75.65 ; "true"
 type-kw = %x74.79.70.65 ; "type"
 uint-kw = %x75.69.6E.74 ; "uint"

Newton & Cordell Expires April 1, 2018 [Page 38]

Internet-Draft JSON Content Rules September 2017

 unordered-kw = %x75.6E.6F.72.64.65.72.65.64 ; "unordered"
 uri-kw = %x75.72.69 ; "uri"

 ;; Referenced RFC 5234 Core Rules
 ALPHA = %x41-5A / %x61-7A ; A-Z / a-z
 CR = %x0D ; carriage return
 DIGIT = %x30-39 ; 0-9
 HEXDIG = DIGIT / "A" / "B" / "C" / "D" / "E" / "F"
 HTAB = %x09 ; horizontal tab
 LF = %x0A ; linefeed
 SP = %x20 ; space
 WSP = SP / HTAB ; white space

 Figure 70: ABNF for JSON Content Rules

9. Acknowledgements

 John Cowan, Andrew Biggs, Paul Kyzivat and Paul Jones provided
 feedback and suggestions which led to many changes in the syntax.

10. References

10.1. Normative References

 [JCR_ABNF]
 Newton, A. and P. Cordell, "ABNF for JSON Content Rules",
 <https://raw.githubusercontent.com/arineng/jcr/master/
 jcr-abnf.txt>.

 [RFC1166] Kirkpatrick, S., Stahl, M., and M. Recker, "Internet
 numbers", RFC 1166, DOI 10.17487/RFC1166, July 1990,
 <https://www.rfc-editor.org/info/rfc1166>.

 [RFC3339] Klyne, G. and C. Newman, "Date and Time on the Internet:
 Timestamps", RFC 3339, DOI 10.17487/RFC3339, July 2002,
 <https://www.rfc-editor.org/info/rfc3339>.

 [RFC3986] Berners-Lee, T., Fielding, R., and L. Masinter, "Uniform
 Resource Identifier (URI): Generic Syntax", STD 66,
 RFC 3986, DOI 10.17487/RFC3986, January 2005,
 <https://www.rfc-editor.org/info/rfc3986>.

 [RFC4234] Crocker, D., Ed. and P. Overell, "Augmented BNF for Syntax
 Specifications: ABNF", RFC 4234, DOI 10.17487/RFC4234,
 October 2005, <https://www.rfc-editor.org/info/rfc4234>.

Newton & Cordell Expires April 1, 2018 [Page 39]

Internet-Draft JSON Content Rules September 2017

 [RFC4648] Josefsson, S., "The Base16, Base32, and Base64 Data
 Encodings", RFC 4648, DOI 10.17487/RFC4648, October 2006,
 <https://www.rfc-editor.org/info/rfc4648>.

 [RFC5322] Resnick, P., Ed., "Internet Message Format", RFC 5322,
 DOI 10.17487/RFC5322, October 2008,
 <https://www.rfc-editor.org/info/rfc5322>.

 [RFC5952] Kawamura, S. and M. Kawashima, "A Recommendation for IPv6
 Address Text Representation", RFC 5952,
 DOI 10.17487/RFC5952, August 2010,
 <https://www.rfc-editor.org/info/rfc5952>.

 [RFC7159] Bray, T., Ed., "The JavaScript Object Notation (JSON) Data
 Interchange Format", RFC 7159, DOI 10.17487/RFC7159, March
 2014, <https://www.rfc-editor.org/info/rfc7159>.

10.2. Infomative References

 [I-D.cordell-jcr-co-constraints]
 Cordell, P. and A. Newton, "Co-Constraints for JSON
 Content Rules", draft-cordell-jcr-co-constraints-00 (work
 in progress), March 2016.

 [RFC7492] Bhatia, M., Zhang, D., and M. Jethanandani, "Analysis of
 Bidirectional Forwarding Detection (BFD) Security
 According to the Keying and Authentication for Routing
 Protocols (KARP) Design Guidelines", RFC 7492,
 DOI 10.17487/RFC7492, March 2015,
 <https://www.rfc-editor.org/info/rfc7492>.

10.3. URIs

 [1] https://github.com/arineng/jcr/tree/master/figs

Appendix A. Co-Constraints

 This specification defines a small set of annotations and directives
 for JCR, yet the syntax is extensible allowing for other annotations
 and directives. [I-D.cordell-jcr-co-constraints] ("Co-Constraints
 for JCR") defines further annotations and directives which define
 more detailed constraints on JSON messages, including co-constraints
 (constraining parts of JSON message based on another part of a JSON
 message).

Newton & Cordell Expires April 1, 2018 [Page 40]

Internet-Draft JSON Content Rules September 2017

Appendix B. Testing Against JSON Content Rules

 One aspect of JCR that differentiates it from other format schema
 languages are the mechanisms helpful to developers for taking a
 formal specification, such as that found in an RFC, and evolving it
 into unit tests, which are essential to producing quality protocol
 implementations.

B.1. Locally Overriding Rules

 As mentioned in the introduction, one tool for testing would be the
 ability to locally override named rules. As an example, consider the
 following rule which defines an array of strings.

 $statuses = [string *]

 Figure 71

 Consider the specification where this rule is found does not define
 the values but references an extensible list of possible values
 updated independently of the specification, such as in an IANA
 registry.

 If a software developer desired to test a specific situation in which
 the array must at least contain the status "accepted", the rules from
 the specification could be used and the statuses rule could be
 explicitly overridden locally as:

 This rule will evaluate positively with the JSON in Figure 73

 $statuses = @{unordered} ["accepted", string *]

 Figure 72

 ["submitted", "validated", "accepted"]

 Figure 73

 Alternatively, the developer may need to ensure that the status
 "denied" should not be present in the array:

 This rule will fail to evaluate the JSON in Figure 75 thus signaling
 a problem.

 $statuses = @{unordered} @{not} ["denied" + , string *]

 Figure 74

Newton & Cordell Expires April 1, 2018 [Page 41]

Internet-Draft JSON Content Rules September 2017

 ["submitted", "validated", "denied"]

 Figure 75

B.2. Rule Callbacks

 In many testing scenarios, the evaluation of rules may become more
 complex than that which can be expressed in JCR, sometimes involving
 variables and interdependencies which can only be expressed in a
 programming language.

 A JCR processor may provide a mechanism for the execution of local
 functions or methods based on the name of a rule being evaluated.
 Such a mechanism could pass to the function the data to be evaluated,
 and that function could return to the processor the result of
 evaluating the data in the function.

Appendix C. Changes from -07 and -08

 This revision of the document makes no substantive changes to any
 parts of the specification. Some of the ABNF has been updated to
 more correctly allow group rules, and other small change have been
 made to the ABNF to make it simpler.

Authors’ Addresses

 Andrew Lee Newton
 American Registry for Internet Numbers
 PO Box 232290
 Centreville, VA 20120
 US

 Email: andy@arin.net
 URI: http://www.arin.net

 Pete Cordell
 Codalogic
 PO Box 30
 Ipswich IP5 2WY
 UK

 Email: pete.cordell@codalogic.com
 URI: http://www.codalogic.com

Newton & Cordell Expires April 1, 2018 [Page 42]

