Net wor k Wor ki ng Group A. Newt on

I nternet-Draft ARI N
I nt ended status: Standards Track P. Cordel
Expires: April 1, 2018 Codal ogi c

Sept enber 28, 2017

A Language for Rul es Descri bing JSON Cont ent
draft-newt on-json-content-rul es-09

Abst ract

Thi s docunent describes a | anguage for specifying and testing the
expected content of JSON structures found in JSON-using protocols,
sof tware, and processes.

Status of This Meno

This Internet-Draft is submitted in full conformance with the
provi sions of BCP 78 and BCP 79.

Internet-Drafts are working docunents of the Internet Engineering
Task Force (IETF). Note that other groups may also distribute
wor ki ng docunments as Internet-Drafts. The list of current Internet-
Drafts is at https://datatracker.ietf.org/drafts/current/.

Internet-Drafts are draft docunents valid for a maxi num of six nonths
and nay be updated, replaced, or obsol eted by other docunents at any
time. It is inappropriate to use Internet-Drafts as reference
material or to cite themother than as "work in progress.”

This Internet-Draft will expire on April 1, 2018.
Copyright Notice

Copyright (c) 2017 | ETF Trust and the persons identified as the
docunment authors. All rights reserved.

This docunment is subject to BCP 78 and the | ETF Trust’s Lega
Provisions Relating to | ETF Docunents
(https://trustee.ietf.org/license-info) in effect on the date of
publication of this docunent. Please review these docunents
carefully, as they describe your rights and restrictions with respect
to this docunment. Code Conponents extracted fromthis docunment nust
include Sinplified BSD License text as described in Section 4.e of
the Trust Legal Provisions and are provided without warranty as
described in the Sinplified BSD License.

Newt on & Cor del | Expires April 1, 2018 [Page 1]

Internet-Draft JSON Content Rul es Sept enber 2017

Tabl e of Contents

1. Introduction . G e e 3
1.1. A First Exanple Specifying Cont ent 3
1.2. A Second Exanple: Testing Content 3

2. Overview of the Language . 5

3. Lines and Comments 7

4. Rules . 8
4.1. Rule Nanes and Assrgnnents 8
4.2. Annotations . C e e 9
4,3. Starting Points and Root Rules e K]
4.4, Type Specifications 10
4.5. Primtive Specifications 12

4.5.1. Nunmbers, Booleans and Null 12
4.5.2. Strings .. 13
4.6. Any Type . . . T X <
4.7. Menber Specrfrcatrons e)
4.8. bject Specifications 16
4.9. Array Specifications . . A
4.9.1. Unordered Array SpeC|f|cat|ons 2 |
4.10. G oup Specifications . . 2
4.11. Ordered and Unordered (Roups |n Arrays e e e e e .22
4.12. Sequence and Choi ce Conbinations in Array, Object, and
G oup Specifications 22
4.13. Repetition in Array, Object, and Goup Specifications . . 23
4.14. Negating Evaluation 25

5. Directives 26
5.1. jcr-version 26
5.2. ruleset-ido L .27
5.3. inmport Lo e 27

6. Tips and Tricks . . 2 ¢
6.1. Any Menber with Any Value 2
6.2. Lists of Values . . . 24
6.3. Goups in Arrayso o ..29
6.4. QGoups in hjects 30
6.5. Goup Rules as Macros 3
6.6. Object Mxins . . . <y
6.7. Subordinate DependenC|es < i

7. Implenmentation Status 32
7.1. JCR Validator . . . P 24
7.2. Codal ogic JCR Parser K
7.3. JCR Java . . . K

8. ABNF Syntax 33

9. Acknow edgements .. 39

10. References . . R 1
10.1. Nornmative References P £ |
10.2. Infomative References 40
10.3. URIs 40

Newt on & Cor del | Expires April 1, 2018 [Page 2]

Internet-Draft JSON Content Rul es Sept enber 2017

Appendi x A, Co-Constraints 40
Appendi x B. Testing Against JSON Content Rules 41
B.1. Locally Overriding Rules 41
B.2. Rule Callbacks 42
Appendi x C. Changes from-07 and -08 42
Authors’ Addresses 42

1. Introduction

Thi s docunent describes JSON Content Rules (JCR), a |anguage for
specifying and testing the interchange of data in JSON [RFC7159]
format used by conputer protocols and processes. The syntax of JCR
is not JSON but is "JSON-1ike", possessing the conci seness and
utility that has made JSON popul ar.

1.1. A First Exanple: Specifying Content

The following JSON data describes a JSON object with two nenbers,
"l'ine-count” and "word-count", each containing an integer

{ "line-count” : 3426, "word-count” : 27886 }
Figure 1
This is also JCR that describes a JSON object with a nenber naned
"line-count” that is an integer that is exactly 3426 and a nenber

naned "word-count” that is an integer that is exactly 27886

For a protocol specification, it is probably nore useful to specify
that each nmenber is any integer and not specific, exact integers:

{ "line-count” : integer, "word-count" : integer }
Figure 2

Since line counts and word counts should be either zero or a positive
i nteger, the specification may be further narrowed:

{ "line-count” : 0.. , "word-count” : 0.. }
Figure 3
1.2. A Second Exanple: Testing Content

Bui I ding on the first exanple, this second exanpl e describes the sane
obj ect but with the addition of another nenber, "file-nane".

Newt on & Cor del | Expires April 1, 2018 [Page 3]

Internet-Draft JSON Content Rul es Sept enber 2017

"file-name" : "rfc7159.txt",
"l'ine-count" : 3426,
"word-count" : 27886
}
Fi gure 4

The followi ng JCR describes objects like it.

"file-name" : string,
"l'ine-count" : O..,
"word-count" : O..
}
Figure 5

For the purposes of witing a protocol specification, JCR may be
broken down into nanmed rules to reduce conplexity and to enable re-
use. The followi ng exanpl e takes the JCR from above and rewites the
nmenbers as naned rul es.

{

$fn,

$lc,

$we
}
$fn = "file-name" : string
$lc = "line-count" : O..
$wc = "word-count" : O..

Figure 6

Wth each nmenber specified as a naned rule, software testers can
override themlocally for specific test cases. In the follow ng
exanple, the named rules are locally overridden for the test case
where the file name is "rfc4627.txt".

$fn = "file-name" : "rfc4627.txt"
$lc = "line-count" : 2102
$we = "word-count" : 16714

Figure 7

Newt on & Cor del | Expires April 1, 2018 [Page 4]

Internet-Draft JSON Content Rul es Sept enber 2017

In this exanple, the protocol specification describes the JSON object
in general and an inplenentation overrides the rules for testing
speci fic cases.

Al'l figures used in this specification are available here [1].
2. Overview of the Language

JCR i s conmposed of rules (as the name suggests). A collection of
rules that is processed together is a ruleset. Rulesets nay al so
contain comments, blank lines, and directives that apply to the
processing of a rul eset.

Rul es are conposed of two parts, an optional rule nane and a rule
specification. A rule specification can be either a type
specification or a nenber specification. A nenber specification
consists of a nenmber name specification and a type specification

A type specification is used to specify constraints on a superset of
a JSON value (e.g. nunber / string / object / array etc.). In
addition to defining primtive types (such as string or integer),
array types, and object types, type specifications nay define the JCR
speci fic concept of group types.

Type specifications corresponding to arrays, objects and groups may
be conposed of other rule specifications.

A nenber specification is used to specify constraints on a JSON
menber (i.e. menbers of a JSON object).

Rules with rul e nane assignments may be referenced in place of type
speci fications and nenber specifications.

Rul es may be defined across |line boundaries and there is no |ine
continuation syntax.

Any rul e consisting only of a type specification is considered a root
rule. Unless otherw se specified, all the root rules of a rul eset
are eval uated against a JSON i nstance or docunent.

Putting it all together, Figure 9 describes the JSON in Figure 8.

Newt on & Cor del | Expires April 1, 2018 [Page 5]

Internet-Draft JSON Content Rul es Sept enber 2017

Exanpl e JSON shanel essly lifted from RFC 4627

{
"I mage": {
"Wdth": 800,
"Hei ght": 600,
"Title": "View from 15th Floor",
"Thunbnai |l ": {
Ul "http://ww. exanpl e. conl i nage/ 481989943"
"Hei ght": 125,
"Wdth": 100
}
"IDs": [116, 943, 234, 38793]
}
}

Figure 8

Newt on & Cor del | Expires April 1, 2018 [Page 6]

Internet-Draft JSON Content Rul es Sept enber 2017

Rul es describing Figure 8

; the root of the JSON instance is an object
; this root rule describes that object

{

t he object specification contains
; one menber specification
"I mage" : {

; $wi dth and $hei ght are defined bel ow
$wi dt h,
$hei ght,

; "Title" nmenber specification
"Title" :string,

; "Thumbnai | " menber specification, which
; defines an object
"Thunbnai |l ": {

7 $width and $height are re-used again
$wi dt h, $hei ght,

"Url" curi

b

; "IDs" nenber that is an array of
; one ore nore integers
"IDs" : [integer *]

; The definitions of the rules $wi dth and $hei ght
$width = "Wdth" : 0..1280
$height = "Height" : 0..1024

Figure 9

3. Lines and Conments

There is no statenent term nator and therefore no need for a |line
continuation syntax. Rules may be defined across |ine boundaries.
Bl ank |ines are all owed.

Newt on & Cor del | Expires April 1, 2018 [Page 7]

Internet-Draft JSON Content Rul es Sept enber 2017

Conments are the sanme as comments in ABNF [RFC4234]. They start with
a senmi-colon (';’) and continue to the end of the line.

4. Rul es

Rul es have two mai n conponents, an optional rule nane assignnent and
a type or menber specification.

Type specifications define arrays, objects, etc... of JSON and may
reference other rules using rule nanes. Mst type specifications can
be defined with repetitions for specifying the frequency of the type
being defined. In addition to the type specifications describing
JSON types, there is an additional group specification for grouping

types.

Menber specifications define nenbers of JSON objects, and are
conmposed of a nenber nane specification and either a type
specification or a rule nane referencing a type specification

Rul es may al so contain annotations which may affect the eval uation of
all or part of arule. Rules without a rule nane assignnent are
considered root rules, though rules with a rule nane assignnent can
be considered a root rule with the appropriate annotation.

Type specifications, depending on their type, can contain zero or
nmore ot her specifications or rule nanes. For exanple, an object
specification mght contain nmultiple menber specifications or rule
nanes that resolve to nenber specifications or a m xture of nenber
specifications and rule nanes. For the purposes of this docunent,
specifications and rul e nanmes conposi ng other specifications are
cal l ed subordi nate conponents.

4.1. Rule Nanmes and Assignnents

Rul e names are signified with the dollar character ('$), which is
not part of the rule nane itself. Rule nanes have two conponents, an
optional ruleset identifier alias and a | ocal rule nane.

Local rule nanes nust start with an al phabetic character (a-z, A-2)
and nust contain only al phabetic characters, nuneric characters, the
hyphen character ('-') and the underscore character (' _'). Loca
rul e nanes are case sensitive, and nust be unique within a rul eset
(that is, no two rule name assignnents nmay use the sanme local rule
nane) .

Rul eset identifier aliases enable referencing rules from another

rul eset. They are not allowed in rule nane assignnments, and only
found in rule nanes referencing other rules. Ruleset identifiers

Newt on & Cor del | Expires April 1, 2018 [Page 8]

Internet-Draft JSON Content Rul es Sept enber 2017

nmust start with an al phabetic character and contain no whitespace.
Rul eset identifiers are case sensitive. Sinple use cases of JCR will
nmost |ikely not use ruleset identifiers.

In Figure 10 below, "http://ietf.org/rfcYYYY.JCR' and
"http://ietf.org/rfcXXXX. JCR' are rul eset identifiers and "rfcXXXX"
is aruleset identifier alias.

ruleset-id http://ietf.org/rfcYYYY.JCR

inport http://ietf.org/rfcXXXX. JCR as rfcXXXX
$nmy_encodings = ("nythic" | "magic")

$al | _encodi ngs ($rfcXXXX. encodi ngs | $my_encodi ngs)

Fi gure 10

There are two forns of rule name assignments: assignnments of
primtive types and assignnments of all other types. Rule nanme
assignnents to prinmitive type specifications separate the rule nanme

fromthe type specification with the character sequence '=:’', whereas
rul e nane assignments for all other type specifications only require
the separation using the "= character

;rul e nane assignnents for prinitive types

$f oo = "foo"

$sone_string = string

;rul e nane assignnments for arrays
$bar = [integer, integer, integer]

;rul e nane assi gnenent for objects
$bob = { "bar" : $bar, "foo" : $foo }
Figure 11
This is the one little "gotcha" in JCR This syntax is necessary so
that JCR parsers may readily distinguish between rul e name
assignnents involving string and regul ar expressions prinmtive types
and nenber nanmes of nenber specifications.

4.2. Annotations

Annot ati ons may appear before a rule nanme assignnent, before a type
or menber specification, or before a rule nanme contained within a

type specification. |In each place, there may be zero or nore
annot ati ons. Each annotation begins with the character sequence "@"
and ends with "}". The following is an exanple of a type

specification with the not annotation (explained in Section 4.14):

Newt on & Cor del | Expires April 1, 2018 [Page 9]

Internet-Draft JSON Content Rul es Sept enber 2017

@not} ["fruits", "vegatables"]
Figure 12
This specification defines the annotations "root", "not", and

"unordered", but other annotations may be defined for other purposes.
4.3. Starting Points and Root Rules

Eval uation of a JSON i nstance or docunent agai nst a rul eset begins
with the evaluation of a root rule or set of root rules. |f no root
rule (or rules) is specified locally at runtime, the set of root
rules specified in the rul eset are evaluated. The order of

eval uation is undefined.

The set of root rules specified in a ruleset is conposed of all rules
wi thout a rule name assignment and all rules annotated with the
"@root}" annotation.

The "@root}" annotation may either appear before a rule name
assignnent or before a type definition. It is ignored if present
before referenced rule nane inside of a type specification

4. 4. Type Specifications

The syntax of each type of type specifications varies dependi ng on
the type:

Newt on & Cor del | Expires April 1, 2018 [Page 10]

Internet-Draft JSON Content Rul es Sept enber 2017

; primtive types can be string
; or nunber literals

; or number ranges

"foo"

2

1..10

; primtive types can al so be nore generalized types
string
i nteger

; primtive type rules may be nanmed
$ny_int = 12

; menber specifications consist of a nmenber nane

; followed by a colon and then foll owed by anot her
; type specification or a rule nane

; (exanple shown with a rule name assi gnnent)
$menl = "bar" : "baz"

$men = "fizz" : $ny_int

; menber names may either be quoted strings

; or regular expressions

; (exanple shown with a rule name assi gnnent)
$menB = /~dev[0-9]$/ : 0..4096

obj ect specifications start and end with "curly braces"”
obj ect specifications contain zero

or nore nenber specifications

or rule names which reference a nenber specification
$meml, "foo" : "fuzz", "fizz" : $ny_int }

P

array specifications start and end with square brackets
array specifications contain zero

or nore non-nenber type specifications

1, 2, 3, $ny_int]

—— . s o=

; finally, group specifications start and end with parenthesis
; groups contain other type specifications

([integer, integer], $rulel)

$rulel = [string, string]

Fi gure 13

Newt on & Cor del | Expires April 1, 2018 [Page 11]

Internet-Draft JSON Content Rul es Sept enber 2017

4.5. Primtive Specifications

Primtive type specifications define content for JSON numnbers,
bool eans, strings, and null.

.5.1. Nunbers, Bool eans and Nul

The rules for booleans and null are the sinplest and take the
foll owi ng forns:

true
fal se
bool ean
nul |

Figure 14

Rul es for nunbers can specify the nunber be either an integer or
floating point numnber:

i nt eger
fl oat
doubl e

Fi gure 15

The keyword "float’ represents a single precision | EEE-754 floating
poi nt nunber represented in decinmal. The keyword 'doubl e’ represents
a doubl e precision | EEE-754 floating point nunber represented in

deci mal format.

Nunmbers may al so be specified as an absolute value or a range of
possi bl e val ues, where a range may be specified using a m ni mum
maxi mum or both:

n
n..m
.. m
n. .
n. f
n.f..mf
..mf
n.f..
Figure 16

When specifying a mnimumand a naxi mum both nust either be an
integer or a floating point nunber. Thus to specify a floating point

Newt on & Cor del | Expires April 1, 2018 [Page 12]

Internet-Draft JSON Content Rul es Sept enber 2017

nunmber between zero and ten a definition of the following formis
used:

0.0..10.0

Fi gure 17

Integers may al so be specified as ranges using bit |engths preceded
by the "int’ or "uint’ words (i.e. "int8, 'uintl6’). The ’int’
prefix specifies the integer as being signed whereas the ’uint’
prefix specifies the integer as being unsigned.

; 0..255
ui nt 8

. -32768..32767
intl6

: 0..65535
ui nt 16

; -9223372036854775808. . 9223372036854775807
i nt 64

; 0..18446744073709551615
ui nt 64

Fi gure 18
4.5.2. Strings

JCR provides a | arge nunber of data types to define the contents of
JSON strings. Generically, a string may be specified using the word
"string’. String literals may be specified using a double quote
character followed by the literal content followed by another double
quote. And regul ar expressions may be specified by enclosing a
regul ar expression within the forward slash (/') character.

Newt on & Cor del | Expires April 1, 2018 [Page 13]

Internet-Draft JSON Content Rul es Sept enber 2017

; any string
string

; astring litera
"she sells sea shells"

; a regul ar expression
[~she sells .*/

Fi gure 19

Regul ar expressions are not inplicitly anchored and therefore nust be
explicitly anchored if necessary.

A string can be specified as a URI [RFC3986] using the word "uri’
but also may be nore narrowy scoped to a URI of a specific schene.
Specific URI schenes are specified with the word "uri’ followed by
two period characters ('..') followed by the URI schene.

; any URI
uri

;a URI narrowed for an HTTPS uri
uri..https

Fi gure 20

| P addresses nay be specified with either the word "ipv4 for |Pv4
addresses [RFC1166] or the word 'ipve' for |Pv6 addresses [RFC5952].
Fully qualified A-l1abel and U | abel donain names may be specified
with the words 'fqdn’ and 'idn’

Dates and tinme can be specified as formats found in RFC 3339

[RFC3339]. The word 'date’ corresponds to the full-date ABNF rul e,
the word 'tinme’ corresponds to the full-tine ABNF rule, and the word
"datetine’ corresponds to the 'date-tine’ ABNF rule.

Emai | addresses formatted according to RFC 5322 [RFC5322] may be

specified using the "email’ word, and E. 123 phone nunbers may be
speci fied using the word ' phone’

Newt on & Cor del | Expires April 1, 2018 [Page 14]

Internet-Draft JSON Content Rul es Sept enber 2017

;| P addresses
i pvd

i pv6

i paddr

; domai n nanes
fqdn
idn

;: RFC 3339 full-date
dat e

; RFC 3339 full-tine
tinme

;. RFC 3339 date-tine
datetine

; RFC 5322 enmi| address
emi |

; phone nunber
phone

Fi gure 21
Bi nary data can be specified in string formusing the encodi ngs
specified in RFC 4648 [RFC4648]. The word 'hex’ corresponds to
basel6, while 'base32’, ’'base32hex’, ’'base64’, and ’base64url
correspond with their RFC 4648 counterparts accordingly.

;. RFC 4648 basel6
hex

;. RFC 4648 base32
base32

;. RFC 4648 base32hex
base32hex

;. RFC 4648 base64
base64

;. RFC 4648 base64url
base64ur |

Fi gure 22

Newt on & Cor del | Expires April 1, 2018 [Page 15]

Internet-Draft JSON Content Rul es Sept enber 2017

4.6. Any Type

It is possible to specify that a value can be of any type allowabl e
by JSON using the word "any’. The 'any’ type specifies any prinitive
type, array, or object.

4.7. Menber Specifications

Menber specifications define nmenbers of JSON objects. Unlike other
type specifications, nenber specifications cannot be root rules and
must be part of an object specification or preceded by a rule nane
assi gnnent .

Menber specifications consist of a menber nane specification followed
by a colon character (':’) followed by either a subordinate
conmponent, which is either a rule nanme or a primtive, object, array,
or group specification. Menber nane specifications can be given
either as a quoted string using double quotes or as a regul ar
expression using forward slash ('/’) characters. Regular expressions
are not inplicitly anchored and therefore nmust have explicit anchors
i f needed.

;menber nane will exactly match "locationURI"

$l ocation_uri = "locationUR " : wuri
;menber nane will match "ethO", "ethl", ... "eth9"
$iface_mappings = /*eth[0-9]1%/ : ipv4

Fi gure 23

4.8. Object Specifications

(hj ect specifications define JSON objects and are composed of zero or
nor e subordi nate conponents, each of which can be either a rul e nang,
menber specification, or group specification. The subordinate
components are enclosed at the start with a left curly brace
character ('{’) and at the end with a right curly brace character

1)

Eval uation of the subordinate conponents of object specifications is
as foll ows:

0 No order is inplied for the menbers of the object being eval uated.

0 Subordinate conponents of the object specification are eval uated
in the order they appear

Newt on & Cor del | Expires April 1, 2018 [Page 16]

Internet-Draft JSON Content Rul es Sept enber 2017

o Each nmenber of the object being evaluated can only match one
subor di nat e conponent.

0 Any nenbers not matched agai nst a subordi nate conponent are
i gnor ed.

The followi ng exanples illustrate matching of JSON objects to JCR
obj ect specifications.

As order is not inplied for the nenbers of objects under eval uation
the following rule will nmatch the JSON in Figure 25 and Figure 26

{ "locationUri" : uri, "statusCode" : integer }
Fi gure 24
{ "locationUri" : "http://exanple.con, "statusCode" : 200 }
Fi gure 25
{ "statusCode" : 200, "locationUi" : "http://exanple.cont }
Fi gure 26

Newt on & Cor del | Expires April 1, 2018 [Page 17]

Internet-Draft JSON Content Rul es Sept enber 2017

Because subordi nate conponents of an object specification are
evaluated in the order in which they are specified (i.e. left to
right, top to bottom and object nenbers can only match one
subordi nat e conponent of an object specification, the rule ol bel ow
will not match against the JSON in Figure 28 but the rule 02 bel ow
will match it.

; zero or nore nmenbers that match "p0", "pl", etc
; and a nenber that nmatches "pl"

$ol = { /~p\d+$/ : integer *, "pl" : integer }

; a nenber that nmatches "pl" and

; zero or nore menbers that match "p0", "pl", etc
$02 = { "pl1" : integer, /"p\d+$/ : integer * }

The first subordinate of rule ol specifies that an object can have
zero or nore nenbers (that is the nmeaning of "*", see Section 4.13)

where the nmenber name is the letter 'p° followed by a nunmber (e.g.
"p0", "pl", "p2"), and the second rule specifies a nenber with the
exact nenber name of "pl". Rule 02 has the exact same nenber

specifications but in the opposite order. Figure 28 does not match
rule ol because all of the nenbers match the first subordinate rule

| eaving none to match the second subordinate rule. However, rule 02
does match because the first subordinate rule nmatches only one nenber
of the JSON object allow ng the second subordinate rule to natch the
ot her nenber of the JSON object.

Fi gure 27
{ "pO0" : 1, "p1" : 2}
Fi gure 28

As stated above, nmenbers of objects which do not match a rule are
ignored. The reason for this validation nodel is due to the nature
of the typical access nodel to JSON objects in many progranm ng

| anguages, where nenbers of the object are obtained by referencing
the menber nane. Therefore extra nenbers nmay exi st w thout harm

However, sone specifications nay need to restrict the nenbers of a
JSON object to a known set. To construct a rule specifying that no
extra nenbers are expected, the @not} annotation (see Section 4.14)
may be used with a "match-all" regul ar expression as the |ast
subor di nat e conponent of the object specification

Newt on & Cor del | Expires April 1, 2018 [Page 18]

Internet-Draft JSON Content Rul es Sept enber 2017
The following rule will match the JSON object in Figure 30 but wll
not match the JSON object in Figure 31

{ "foo" : 1, "bar" : 2, @not} // : any + }
Fi gure 29
{ "foo" : 1, "bar" : 2}
Fi gure 30
{ "foo" : 1, "bar" : 2, "baz" : 3}

Fi gure 31
Thi s works because subordi nate conponents are evaluated in the order
they appear in the object rule, and the |ast conponent accepts any
menber with any type but fails to validate if one or nore of those
components are found due to the @not} annotation

4.9. Array Specifications
Array specifications define JSON arrays and are conposed of zero or
nmor e subordi nate conponents, each of which can either be a rule nane
or a primtive, array, object or group specification. The
subordi nat e conponents are enclosed at the start with a |left square
brace character ('[’) and at the end with a right square brace

character (']').

Eval uation of the subordi nate conponents of array specifications is
as foll ows:

0 The order of array itens is inplied unless the @unordered}
annotation is present.

0 Subordinate conponents of the array specification are evaluated in
the order they appear

o0 Each itemof the array being evaluated can only match one
subordi nat e conponent of the array specification

o If any itens of the array are not matched, then the array does not
mat ch the array specification.

These rules are further explained in the exanpl es bel ow.

Newt on & Cor del | Expires April 1, 2018 [Page 19]

Internet-Draft JSON Content Rul es Sept enber 2017

[0..1024, 0..980]
Fi gure 32

Unl i ke object specifications, order is inplied in array
specifications by default. That is, the first subordinate conponent
will match the first elenent of the array, the second subordinate
component will match the second el enent of the array, and so on

Take for exanple the follow ng rul eset:

; the first element of the array is to be a string
; the second elenent of the array is to be an integer
$al = [string, integer]

; the first elenent of the array is to be an integer
; the second elenment of the array is to be a string
$a2 = [integer, string]

Fi gure 33

It defines two rules, al and a2. The array in the follow ng JSON
will not match al, but will match a2

[24, "Bob Snurd"]
Fi gure 34

If an array has nore elenments than can be matched fromthe array
specification, the array does not match the array specification. O
stated differently, an array with unmat ched el enments does not
validate. Using the exanple array rule a2 from above, the foll ow ng
array does not match because the | ast element of the array does not
mat ch any subordi nate conponent:

[24, "Bob Snurd", "http://exanple.conl bob _snurd"]
Fi gure 35
To allow an array to contain any value after guaranteeing that it

contains the necessary itens, the |ast subordi nate conponent of the
array specification should accept any item

Newt on & Cor del | Expires April 1, 2018 [Page 20]

Internet-Draft JSON Content Rul es Sept enber 2017

; the first element of the array is to be an integer
; the second elenment of the array is to be a string
; anything el se can foll ow

$a3 = [integer, string, any *]

The JSON array in Figure 35 will validate against the a3 rule in this
exanpl e.

Fi gure 36
4.9.1. Unordered Array Specifications
Array specifications can be nmade to behave in a similar fashion to
obj ect specifications with regard to the order of matching with the
@ unor dered} annotati on.
In the ruleset below, al and a2 have t he sane subordi nate conponents
given in the same order. a2 is annotated with the @unordered}

annot at i on.

[string, integer]
@unordered} [string, integer]

Fi gure 37
The JSON array bel ow does not match al but does match a2
[24, "Bob Snurd"]
Fi gure 38
Li ke ordered array specifications, the subordi nate components in an
unordered array specification are evaluated in the order they are

specified. The difference is that they need not match an el enent of
the array in the sane position as given in the array specification

Finally, like ordered array specifications, unordered array
specifications also require that all elenents of the array be matched
by a subordi nate conponent. |If the array has nore el enents than can

be matched, the array does not match the array specification

4.10. Goup Specifications
Unl i ke the other type specifications, group specifications have no
direct tie with JSON syntax. G oup specifications sinply group

together their subordi nate conponents. G oup specifications enclose
one or nore subordi nate conponents with the parenthesis characters.

Newt on & Cor del | Expires April 1, 2018 [Page 21]

Internet-Draft JSON Content Rul es Sept enber 2017

Group specifications and any nesting of group specifications, nust
conformto the allowabl e set of type specifications of the type
specifications in which they are contained. For exanple, a group
specification inside of an array specification nay not contain a
menber specification since nmenber specifications are not allowed as
direct subordinates of array specifications (arrays contain val ues,
not object nenbers in JSON). Likew se, a group specification

ref erenced inside an object specification must only contain nmenber
specifications (JSON objects may only contain object nenbers).

The following is an exanple of a group specification
$the_bradys = [$parents, $children]
$children = ("Geg", "Marsha", "Bobby", "Jan")
$parents = ("M ke", "Carol")
Fi gure 39

Li ke the subordi nate conponents of array and object specifications,
t he subordi nate conmponents of a group specification are evaluated in
the order they appear

4.11. Odered and Unordered G oups in Arrays

Section 4.9.1 specifies that arrays can be eval uated by the order of
the itens in the array or can be evaluated w thout order

Section 4.10 specifies that arrays may have group rul es as
subor di nat e conponents.

The eval uation of a group specification inside an array specification
inherits the ordering property of the array specification. If the
array specification is unordered, then the itens of the group
specification are al so considered to be unordered. And if the array
specification is ordered, then the itens of the group specification
are al so considered to be ordered.

4.12. Sequence and Choi ce Conbinations in Array, Object, and G oup
Speci fications

Conbi nati ons of subordi nate conponents in array, object, and group
specifications can be specified as either a sequence ("and") or a
choice ("or"). A sequence is a subordinate conponent followed by the
comma character (’',’) followed by anot her subordinate conponent. A
choice is a subordinate conponent followed by a pipe character ('|’)
fol |l owed by anot her subordi nate conponent.

Newt on & Cor del | Expires April 1, 2018 [Page 22]

Internet-Draft JSON Content Rul es Sept enber 2017

; sequence ("and")

["this" , "that"]

; choice ("or")

["this" | "that"]
Fi gure 40

Sequence and choi ce conbi nati ons cannot be m xed, and group
specifications nmust be used to explicitly declare precedence between

a sequence and a choice. Therefore, the following is illegal
["this", "that" | "the_other"]
Figure 41

The exanpl e above shoul d be expressed as:
["this", ("that" | "the_other")]
Fi gure 42

NOTE: A future specification will clarify the choice (']")
operation as inclusive or, exclusive or ("xor") or otherw se. At
present readers should assume the choice ('|’) operator is an
inclusive or. However, for objects and unordered arrays that is
not ideal, nor is xor. W are in the process of defining an
algorithmto "rewite" choices of rules for use with inclusive or
which is nore suitable for the data nodel of JSON

4.13. Repetition in Array, hject, and G oup Specifications

Eval uati on of subordi nate conponents in array, object, and group
specifications may be succeeded by a repetition expression denoting
how many tines the subordinate conponent shoul d be eval uat ed.
Repetition expressions are specified using a Kl eene synbol ('?, '+
or '*') or with the '*' synbol succeeded by specific m ni mum and/ or
maxi mum val ues, each being non-negative integers. Repetition
expressions may al so be appended with a step expression, which is the
"% synbol followed by a positive integer

When no repetition expression is present, both the nininum and
maxi mum are 1.

A m ni mrum and maxi mum can be expressed by giving the mnimum fol | owed

by two period characters ('..') followed by the maxi rum with either
the m ni num or naxi num bei ng optional. Wen the mninmmis not

Newt on & Cor del | Expires April 1, 2018 [Page 23]

Internet-Draft JSON Content Rul es Sept enber 2017

explicitly specified, it is assuned to be zero. Wen the naxinumis
not explicitly specified, it is assuned to be positive infinity.

; exactly 2 octets
$word = [$octet *2]
$octet = int8

;1 to 13 nane servers
[$nanme_servers *1..13]
$nane_servers =: fqdn

; 0 to 99 ethernet addresses
{ /"eth.*/ : $mac_addr *..99 }
$mac_addr =: hex

; four or nore bytes
[$octet *4..]

Fi gure 43

The al |l owabl e Kl eene operators are the question mark character (' 7?)
whi ch specifies zero or one (i.e. optional), the plus character ('+')
whi ch specifies one or nore, and the asterisk character ('*') which
specifies zero or nore.

; age i s optiona
{ "nanme" : string,

age i nteger ?}
; Zero or nore errors
$error_set = (string *)

; 1 or nore integer val ues
[integer +]

Fi gure 44

A repetition step expression may follow a nininmumto nmaxi num
expression or the zero or nore Kl eene operator or the one or nore
Kl eene oper at or

0 When the repetition step follows a nmininmumto nmaxi mum expressi on
or the zero or nore Kl eene operator ('*'), it specifies that the
total nunber of repetitions present in the JSON i nstance being
validated minus the mninumrepetition value nust be a nultiple of
the repetition step (e.g. the total repetitions mnus the m ni mum
repetition value nust be divisible by the step value with a
remai nder of zero).

Newt on & Cor del | Expires April 1, 2018 [Page 24]

Internet-Draft JSON Content Rul es Sept enber 2017

0 When the repetition step follows a one or nore Kl eene operator
("+), the mininumrepetition value is set equal to the repetition
step value and the total nunber of repetitions mnus the step
value nust be a nultiple of the repetition step val ue.

The following is an exanple for repetition steps in repetition
expr essi ons.

; there nust be at |east 2 nane servers
; there may be no nore than 12 nane servers

; there nust be an even nunber of nane servers
; e.g. 2,4,6,8,10,12

[$name_servers *2..12% |

$nane_servers =: fqdn

;o mnimumis zero
;o maximumis 100
; nmust be an even nunber
/"eth.*/ : $mac_addr *..100% }
$mac_addr =: hex

; at least 32 octets

; must be be in groups of 16
; e.g. 32, 48, 64 etc

[$octet *32..9%6]

$octet =: int8

; if there are to be error sets,

; their nunber nust be divisible by 4
; e.g. 0, 4, 8, 12 etc

$error_set = (string *%l)

; Throws of a pair of dice nmust be divisible by 2
; e.g. 2, 4, 6 etc
$dice_throws = (1..6 +9R)
Fi gure 45
4.14. Negating Eval uation
The evaluation of a rule can be changed with the @not} annotation.

Wth this annotation, a rule that woul d ot herwi se match does not, and
a rule that would not have mat ched does

Newt on & Cor del | Expires April 1, 2018 [Page 25]

Internet-Draft JSON Content Rul es Sept enber 2017

; match anything that isn't the integer 2
$not _two = [@not} 2]

; error if one of the status values is "fail"
$status = @not} @unordered} ["fail", string *]

Fi gure 46
5. D rectives

Directives nodify the processing of a ruleset. There are two forns
of the directive, the single line directive and the multi-Iline
directive.

Single line directives appear on their own line in a rul eset, begin
with a hash character ("#) and are term nated by the end of the
line. They take the following form

directive_name paraneter_1 paraneter_2 ..

Fi gure 47
Multi-line directives al so appear on their own |ines, but may span
multiple lines. They begin with the character sequence "#{" and end
with "}". The take the follow ng form

#{ directive_nane
parameter _1 paranter_2
paraneter_3

Fi gure 48

This specification defines the directives "jcr-version", "rul eset-
id', and "inport", but other directives may be defi ned.

5.1. jcr-version
This directive declares that the ruleset conplies with a specific
version of this standard. The version is expressed as a nmj or
integer followed by a period followed by a m nor integer.

jcr-version 0.7

Fi gure 49

Newt on & Cor del | Expires April 1, 2018 [Page 26]

Internet-Draft JSON Content Rul es Sept enber 2017

The maj or. nminor nunber signifying conpliance with this docunment is
"0.7". Upon publication of this specification as an | ETF proposed
standard, it will be "1.0".
jcr-version 1.0
Fi gure 50

Rul eset authors are advised to place this directive as the first line
of a ruleset.

This directive may have optional extension identifiers follow ng the
versi on nunmber. Each extension identifiers is preceded by the plus
("+) character and separated by white space. The fornmat of
extension identifiers is specific to the extension, but it is
recommended that they are term nated by a version nunber.

jcr-version 1.0 +co-constraints-1.2 +jcr-doc-1.0

Fi gure 51
5.2. ruleset-id

This directive identifies a ruleset to rule processors. |t takes the
form

ruleset-id identifier
Fi gure 52
An identifier can be a URL (e.g. http://exanple.conlfoo), an inverted
domai n nane (e.g. com exanple.foo) or any other formthat confornms to
the JCR ABNF syntax that a rul eset author deens appropriate. To a
JCR processor the identifier is treated as an opaque, case-sensitive
string.
5.3. inport
The inport directive specifies that another ruleset is to have its
rules evaluated in addition to the rul eset where the directive
appears.
The followi ng is an exanpl e:
inport http://exanple.comrfc9999 as rfc9999

Fi gure 53

Newt on & Cor del | Expires April 1, 2018 [Page 27]

Internet-Draft JSON Content Rul es Sept enber 2017

6

6

The rule nanes of the ruleset to be inported nay be referenced by
prepending the alias followed by a period character (’.’) followed by
the rule nane (i.e. "alias.nane"). To continue the exanple above, if
the ruleset at http://exanple.conrfc9999 were to have a rul e naned
"encoding’, rules in the ruleset inporting it can refer to that rule
as ' rfc9999. encodi ng’
Ti ps and Tricks
1. Any Menber with Any Val ue
Because nenber nanmes may be specified with regular expressions, it is
possi ble to construct a menber rule that nmatches any nenber nane. As
an exanple, the follow ng defines an object with a nenber with any
nane that has a value that is a string
{ I/ : string }
Fi gure 54
The JSON bel ow nmat ches the above rule.
{ "foo" : "bar" }
Fi gure 55
Li kewi se, the JSON bel ow al so mat ches the sane rul e.
{ "fuzz" : "bazz" }

Fi gure 56

Constructing an object with a nenber of any nane with any type woul d
therefore take the form

{ /Il : any }
Fi gure 57

The above rule nmatches not only the two JSON obj ects above, but the
JSON obj ect bel ow

{ "fuzz" : 1234}

Fi gure 58

Newt on & Cor del | Expires April 1, 2018 [Page 28]

Internet-Draft JSON Content Rul es Sept enber 2017

6.2. Lists of Values
G oup specifications may be used to create enunerated |ists of
primtive data types, because primtive specifications may contain a
group specification, which may have nultiple primtive
specifications. Because a prinitive specification nust resolve to a
single data type, the group specification nmust only contain choice
combi nati ons.
Consi der the foll ow ng exanpl es:

; either an IPv4 or | Pv6 adress
$address = (ipvd | ipv6)

; allowable fruits
$fruits = ("apple" | "banana" | "pear")

Fi gure 59
6.3. Goups in Arrays
G oups may be a subordi nate conponent of array specifications
[(ipvd | ipv6), integer]
Fi gure 60
Unlike primtive specifications, subordinate group specifications in
array specifications may have sequence conbi nati ons and contain any

type specification.

; agroup in an array
[($first_nanme, $middle_nane ?, $last_nane), $age]

; a group referenced froman array
[$nane, $age]
$nane = ($first_nane, $m ddle_nanme ?, $last_name)

$first_name = string
$ni ddl e_nane =: string
$l ast _name =: string
$age =: O.
Fi gure 61

Newt on & Cor del | Expires April 1, 2018 [Page 29]

Internet-Draft JSON Content Rul es Sept enber 2017

6.4. Goups in Objects

G oups may be a subordi nate conponent of object specifications
Subordi nate group specifications in object specifications may have
sequence conbi nations but nust only contain nmenber specifications.

; a group in an object
{ ($title, $date, Sauthor), $paragraph + }

; a group referenced from an obj ect
{ $front_matter, $paragraph + }
$front_matter = ($title, $date, $author)

$title = "title" : string

$date = "date" : date

$author = "author” : [string *]
$paragraph = /p[0-9]*/ : string

Fi gure 62

NOTE: A future specification will clarify the choice (']’)
operation as inclusive or, exclusive or ("xor") or otherw se. At
present readers should assunme the choice ('|’') operator is an
inclusive or. W are in the process of defining an algorithmto
"rewite" choices of rules for use with inclusive or which is nore
suitable for the data nodel of JSON. Such a change w Il inpact

t he gui dance gi ven bel ow.

When using groups to use both sequences and choi ces of nenber
specifications, consideration nust be given to the processing of
obj ect specifications where by unmat ched nmenber specifications are
i gnored (see Figure 23).
A casual reading of this rule mght lead a reader to believe that the
JSON object in Figure 64 would not match, however it does because the
extra nenber (either "foo" or "baz") is not nmatched but is ignored.
{ "bar":string, ("foo":integer | "baz":string) }
Fi gure 63
{ "bar":"thing", "foo":2, "baz": "thingy" }
Fi gure 64

The rule in Figure 63 nust be nodified to either match all extra
rules, as in Figure 65, or the logic of the rules nust be rewitten

Newt on & Cor del | Expires April 1, 2018 [Page 30]

Internet-Draft JSON Content Rul es Sept enber 2017

to explicitly negate the presence of the unwanted nenbers, as in
Fi gure 66.

{ "bar":string, ("foo":integer | "baz":string), @not} //:any + }
Fi gure 65
{ "bar":string,
(("foo":integer , @not} "baz":string) |
("baz":string , @not} "foo":integer)
)}
Fi gure 66
6.5. Goup Rules as Macros
The syntax for group specifications acconmpbdates one ore nore
subordi nat e conponents and a repetition expression for each. O her
than grouping nmultiple rules, a group specification can be used as a
macro definition for a single rule.
$paragraphs = (/p[0-9]*/ : string +)
Fi gure 67
6.6. Object Mxins
Group rules can be used to create object nixins, a pattern for
witing data nodels simlar in style to object derivation in sone
programm ng | anguages. |n the exanple in below, both obj1l and obj2

have a nenbers "foo" and "fob" with obj1l having the additional nenber
"bar" and obj 2 having the additional nenber "baz"

$m xin_group = ("foo" : integer, "fob" : wuri)
$obj 1 = { $mi xin_group, "bar" string }
$obj 2 = { $m xi n_group, "baz" string }

Fi gure 68

6. 7. Subordi nate Dependencies

In object and array specifications, there may be situations in which
it is necessary to condition the existence of a subordinate conponent
on the existence of a sibling subordinate conponent. |In other words,
exanpl e_two should only be evaluated if exanpl e_one eval uates

positively. O put another way, a nmenber of an object or an item of

Newt on & Cor del | Expires April 1, 2018 [Page 31]

Internet-Draft JSON Content Rul es Sept enber 2017

7

7

an array may be present only on the condition that another nenber or
itemis present.

In the followi ng exanple, the referrer_uri nenber can only be present
if the location_uri nenber is present.

; $referrer_uri can only be present if
; $location_uri is present
{ ($location_uri, $referrer_uri?)?}

$location_uri = "locationURI" : wuri
$referrer_uri = "referrerURI" : uri
Fi gure 69

| npl enent ati on Status

This section records the status of known inplenmentations of the
protocol defined by this specification at the tinme of posting of this
Internet-Draft, and is based on a proposal described in [RFC7492]

The description of inplenentations in this section is intended to
assist the |ETF in its decision processes in progressing drafts to
RFCs. Please note that the listing of any individual inplenentation
here does not inply endorsenent by the IETF. Furthernore, no effort
has been spent to verify the information presented here that was
supplied by I ETF contributors. This is not intended as, and nust not
be construed to be, a catalog of available inplenentations or their
features. Readers are advised to note that other inplenentations may
exi st.

According to [RFC7492] , "this will allow reviewers and wor ki ng
groups to assign due consideration to docunments that have the benefit
of running code, which may serve as evidence of val uable
experinentation and feedback that have nade the inplenented protocols
nmore mature. It is up to the individual working groups to use this
informati on as they see fit".

1. JCR Validator

The JCR Validator, witten in Ruby, currently inplenents all portions
of this specification, and has been used extensively to prototype
various aspects of JCR under consideration. |It’s devel opnent has
gone hand-in-hand with this specification

This software is primarily produced by the American Registry for
Internet Nunbers (ARIN) and freely distributable under the |ISC
I'icense.

Newt on & Cor del | Expires April 1, 2018 [Page 32]

Internet-Draft JSON Content Rul es Sept enber 2017

Source code for this software is available on GtHub at
<https://github.com arineng/jcrvalidator> This software is also
easily obtained as a Ruby Gem t hrough the Ruby Gem system

7.2. Codal ogi ¢ JCR Parser

The Codal ogi c JCR Parser is a C++ inplenmentation of a JCR parsing
engine, and is a work in progress. It is targeted for the Wndows
pl at f or m

This software is produced by Codal ogic Ltd and freely distributable
under the Ghu LGPL v3 license

Source code is availabe on GtHub at <https://github.com codal ogic/
cl-jcr-parser>

7.3. JCR Java

JCR Java is a work in progress and currently only inplenments the
parsing of JCR rul esets according to the ABNF using a custom parsing
f ramewor k.

This software is produced by the Anerican Registry for Internet
Nurmbers (ARIN) and freely distributable under the MT license.

Source code is avail abl e on BitBucket at
<https://bitbucket.org/anewton_1998/jcr_java>

8. ABNF Synt ax
The foll owi ng ABNF descri bes the syntax for JSON Content Rules. A

text file containing these ABNF rul es can be downl oaded from
[JCR_ABNF] .

jcr = *(sp-cnt / directive / root-rule / rule)
sp-cnt = spaces / comment
spaces = 1*(WP/ CR/ LF)
DSPs = ,; Directive spaces
1*WsP / ; When in one-line directive
1*sp-cnt ; When in nuti-line directive
conment ";" *comment - char conment - end- char

HTAB / %% 20- 10FFFF
; Any char other than CR/ LF
CR/ LF

conment - char

comrent - end- char

directive = "#" (one-line-directive / multi-line-directive)
one-line-directive = [DSPs]

Newt on & Cor del | Expires April 1, 2018 [Page 33]

Internet-Draft JSON Content Rul es Sept enber 2017

(directive-def / one-line-tbd-directive-d)
*WEP eol
multi-line-directive = "{" *sp-cmt
(directive-def /
multi-line-tbd-directive-d)
*sp-cnt "}"
jecr-version-d / ruleset-id-d / inmport-d
j cr-version-kw DSPs nmj or-ver si on
"." mnor-version
*(DSPs "+" [DSPs] extension-id)
non- neg-i nt eger
non- neg-i nt eger
ALPHA *not - space
rul eset-id-kw DSPs rul eset-id
i mport-kw DSPs rul eset-id
[DSPs as-kw DSPs rul eset-id-alias]
ALPHA *not - space
not - space %% 21- 10FFFF
rul eset-id-alias nane
one-line-tbd-directive-d = directive-name
[WBP one-line-directive-parameters |

directive-def
jcr-version-d

maj or - ver si on
m nor - ver si on
extension-id
rul eset-id-d
i mport-d

rul eset-id

directive-nane = nane
one-line-directive-paraneters = *not-eo
not - eol = HTAB / %20- 10FFFF
eol = CR/ LF
multi-line-tbd-directive-d = directive-nane
[1*sp-cmt multi-line-directive-paraneters]
multi-line-directive-paraneters = nulti-Iline-paraneters
multi-line-paraneters = *(conment / g-string / regex /
not-nmulti-Iline-special)

not-multi-line-special = spaces /| W21 / 9%23-2E / %30-3A /
%3C-7C /| 9&T7E-10FFFF ; not ", /, ; or }

root-rule = value-rule / group-rule

rul e annotations "$" rul e-name *sp-cnt

"=" *sp-cnt rul e-def

rul e- nane = nane
target-rul e-name = annotations "$"
[ruleset-id-alias "."]
rul e- nane
name = ALPHA *(ALPHA/ DIGT / "-" ["-")
rul e- def = menber-rule / type-designator rule-def-type-rule /

array-rule / object-rule / group-rule /
target-rul e- nane
type-kw 1*sp-cnt / ":" *sp-cmt

t ype- desi gnat or

Newt on & Cor del | Expires April 1, 2018 [Page 34]

Internet-Draft

rul e-def -type-rul
val ue-rul e
menber-rul e

menber - name- spec
type-rule
type- choi ce

explicit-type-choice =

I n o

JSON Cont ent Rul es

= value-rule / type-choice

Sept enber 2017

primtive-rule / array-rule / object-rule

annot ati ons

menber - nane-

spec *sp-cnt

regex / g-string
val ue-rule / type-choice / target-rule-nanme

annotations "(" type-choice-itens
*(choi ce-comnbi ner type-choice-itens)
type- desi gnat or type-choice

;" *sp-cnt type-rule

"y

type-choice-itens = *sp-cnt (type-choice / type-rule) *sp-cnt

annot ati ons
annot ati on- set

not - annot at i on

unor der ed- annot ati on =

r oot - annot ati on
t bd- annot ati on
annot at i on- nane

annot ati on- paraneters =

primtive-rule
primtive-def

null -type
bool ean-type
true-val ue
fal se-val ue
string-type
string-val ue
string-range
doubl e-type
float-type
fl oat -range
float-mn

f | oat - max

fl oat - val ue
i nteger-type

Newt on & Cordel |

*("@" *sp-cnt annotation-set *sp-cnt

*sp-cmt)

e

not - annot ati on / unorder ed-annotati on /

root-annotation / tbd-annotation

not - kw

r oot - kw

unor der ed- kw

annot ati on-nanme [spaces annotation-paraneters |

nane

annot ati ons
string-type
null-type /
fal se-val ue
fl oat -range

i nteger-type /

i pv6-type /

primtive-def

mul ti-1ine-paraneters

/ string-range / string-val ue /
bool ean-type / true-val ue /
/ double-type / float-type /

/ float-value /

i nt eger-range /
sized-int-type / sized-uint-type /
i paddr-type / fqdn-type /
uri-type / phone-type / email-type /

i nt eger-val ue /
i pv4-type /

i dn-type /

datetine-type / date-type / tine-type /
hex-type / base32hex-type / base32-type /

base64url -type / base64-type / any

nul | - kw
bool ean- kw
true- kw
fal se-kw
string- kw
g-string
regex
doubl e- kw
fl oat - kw
float-nmn
fl oat

fl oat

fl oat

i nt eger-kw

Expi res Apri

"] float-max 1/

1, 2018

fl oat - max

[Page 35]

Internet-Draft

i nt eger-range

integer-mn
i nt eger - max
i nt eger-val ue
sized-int-type

si zed- ui nt-type

i pv4-type

i pv6-type

i paddr-type
fqdn-type

i dn-type
uri-type
phone-type
emai | -type
datetine-type
date-type
time-type
hex-type
base32hex-type
base32-type
base64url -type
base64-type
any

object-rule
obj ect-itens

object-item

object-itemtypes

obj ect - group

array-rule
array-itens

array-item

array-itemtypes

array-group

group-rul e
group-itens

group-item

group-itemtypes

gr oup- gr oup

Newt on & Cordel |

JSON Cont ent Rul es

i nteger-nin

M

i nt eger - max

i nt eger
i nt eger
i nt eger

i nt-kw pos-integer
ui nt - kw pos-i nt eger

i pv4d- kw

i pv6- kw

i paddr - kw
f gdn- kw
i dn- kw
uri-kw [
phone- kw
emai | - kw
dat eti ne- kw
dat e- kw
time-kw

hex- kw
base32hex- kw
base32- kw
base64url - kw
base64- kw
any- kw

annot ations "{"

1*(choi ce-conbi ner object-item)]
object-itemtypes *sp-cnt |

obj ect-group /

annot ations " ("

annotations "["

array-itemtypes *sp-cnt [

i nteger-max] /

uri-scheme |

*sSp-cnt
[object-itens *sp-cnt] "}"
object-item [1*(sequence-conbi ner object-item) /

Sept enber 2017

repetition *sp-cmt]

menber-rule / target-rul e-nane
*sp-cm [object-items *sp-cnt] ")"

*sp-cmt [array-itens *sp-cnt] "]"
array-item|[1*(sequence-conbiner array-item) /
1*(choi ce-conbiner array-item)]

repetition *sp-cmt]

array-group / type-rule / explicit-type-choice
*sp-cmt [array-itens *sp-cnt] ")"

annot ations " ("

annotations " ("

group-itemtypes *sp-cnt [

*sp-cmt [group-itens *sp-cnt] ")"
group-item|[1*(sequence-conbi ner group-item) /
1*(choi ce-conbi ner group-item)]

group-group / nenmber-rule /

type-rule /
group-rul e

Expi res Apri

explicit-type-choice

1, 2018

repetition *sp-cmt]

[Page 36]

Internet-Draft JSON Content Rul es Sept enber 2017

sequence-conbiner = "," *sp-cm
choi ce-conbiner = "|" *sp-cnt
repetition = optional / one-or-nore /

optional
one-or-nore
zero-or-nore
repetition-range

nm n-max-repetition

mn-repetition
max-repetition
m n-r epeat
max- r epeat

specific-repetiti

repetition-step
st ep-si ze

i nteger
non- neg-i nt eger
pos-i nt eger

I 1mo I
>

repetition-range / zero-or-nore
n ?ll
n +II

[
e |

repetition-step |
repetition-step |

*sp-cmt (

m n-max-repetition / mn-repetition /
max-repetition / specific-repetition)
nmn-repeat ".." max-repeat

[repetition-step]

mn-repeat ".." [repetition-step]
".." max-repeat [repetition-step]
non- neg-i nt eger

non- neg-i nt eger

non- neg-i nt eger

"% step-size

non- neg- i nt eger

ngn

"0" [/ ["-"] pos-integer
"0" /| pos-integer
digitl-9 *DIAT

fl oat =[minus] int frac [exp]
; From RFC 7159 except 'frac’ required

m nus = 9%2D ;-

pl us = %2B ;+

i nt =zero/ (digitl-9 *DIAT)

digitl-9 = 9%31- 39 ; 1-9

frac = decimal -point 1*DIG T

deci mal - poi nt = W2E ;

exp =e [mnus / plus] 1*DIGAT

e = 965 / W45 ; e E

zero = %30 ;0

g-string = quot ation-mark *char quotation-mark
; From RFC 7159

char = unescaped /
escape (
w22 / ;" quot ation mark W+0022
w5C / 7o\ reverse solidus U+005C
W 2F / i sol i dus U+002F
w62 / ;b backspace U+0008
%66 / ; f form feed U+000C
W 6E / ;N line feed U+000A
w72 |/ por carriage return W000D

Newt on & Cordel |

Expires April 1, 2018

[Page 37]

Internet-Draft

escape
quot at i on- mar k
unescaped

regex
not - sl ash
regex-nodifiers
uri-scheme

7, Keywords
any- kw

as- kw
base32- kw
base32hex- kw
base64- kw
base64ur| - kw
bool ean- kw
dat e- kw

dat eti ne- kw
doubl e- kw
emai | - kw

fal se-kw

fl oat - kw

f gdn- kw

hex- kw

i dn- kw

i mport - kw

i nt-kw

i nt eger-kw

i paddr - kw

i pv4- kw

i pv6- kw

j cr-version- kw
not - kw
nul | - kw
phone- kw

r oot - kw

rul eset-id-kw
string- kw
time-kw
true- kw
type- kw

ui nt - kw

Newt on & Cordel |

JSON Cont ent Rul es

74 / oot tab

%75 AHEXDI G) ; UuXXXX

9% 5C o\

22 "

9%20-21 / 9%23-5B / 9%5D- 10FFFF

"/" *(escape "/" | not-slash)
[regex-nodifiers |

HTAB / CR/ LF / %20-2E /
; Any char except "/"
*C"itolotst L "Xt)

% 30-

1* ALPHA

ox61.
x61.
X 62.
0X62.
62
0X62.
X62.
x64.
o 64.
x64.
0 65.
0 66.
0 66.
0 66.
%x68.
9% 69.
9 69.
0 69.
0% 69.
9% 69.
%x69.
9% 69.
OXBA.
o 6E.
o 6E.
% 70.
OX72.
OUX72.
O 73.
Ux74.
Ux74.
Ux74.
X 75.

6E.
73

61.
61.
61.
61.
6F.
61.
61.
6F.
6D.
61.
6C.
71.
65.
64.
6D.
6E.
6E.
70.
70.
70.
63.
6F.
75.
68.
6F.
75.
74.
69.
72.
79.
69.

79

73.
73.
73.
73.
6F.
74.

65.
65.

33.32
33. 32.
.34
36. 34.
65. 61.

68. 65. 78

65.
6C.
65

75.72.6C
6E

. 74.
62. 6C.
69. 6C
73.65
61. 74
6E

69.
65

6D. 65
75.
61.
6C.
6F.
64.
78
6E
70.
74
74.
61.
76.
76.
72.
74
6C.
6F.

6F. 72. 74
65.
64.
34

36

67.
64.

65.
72

72

. 76. 65. 72. 73. 69. 6F
6C
6E. 65
6C.
72.
6D.
75.
70.
6E.

65.
69.
65
65
65
74

73.
6E.

65.
67

74.2D. 69. 64

Expires April 1, 2018

Sept enber 2017

U+0009
U+ XXXX

||/||

10FFFF

"any"
"as”
"base32"
"base32hex"
"base64"
"base64url "
"bool ean”
"dat e"
"dateti ne"
"doubl e"
"emai | "
"fal se"

"fl oat"
"fqdn"
"hex"

"idn"
"inmport"
"int"
"integer"
"i paddr"

"i pv4"
"ipve"

6E ; "jcr-version”
"not"
"nul "
"phone”
"root"

"rul eset-id"
"string"
"tinme"
"true"
"type"
"uint"

[Page 38]

Internet-Draft

unor der ed- kw
uri-kw

ALPHA
CR
DAT
HEXDI G
HTAB
LF

SP

JSON Content Rul es Sept enber 2017

= U75. 6E. 6F. 72. 64. 65. 72. 65. 64 ; "unordered"
= O75.72.69 o "uri "
;; Referenced RFC 5234 Core Rul es
= U%41-5A /| 9%61-7A D AAZ | a-z
= %O0D ; carriage return
= o 30- 39 ; 0-9
=bd4EaT/ "A"/ "B/ "C/ "D/ "E"[] "F"
= %09 ; horizontal tab
= %0A ; linefeed
= %20 ; space
= SP / HTAB ; white space

WEP

Figure 70: ABNF for JSON Content Rules

9. Acknow edgenents

John Cowan,

Andr ew Bi ggs, Paul Kyzivat and Paul Jones provided

f eedback and suggestions which led to many changes in the syntax.

10. Ref er ences

10.1. Nornmati

[JCR_ABNF]

[RFC1166]

[RFC3339]

[RFC3986]

[RFCA234]

ve References

Newt on, A. and P. Cordell, "ABNF for JSON Content Rul es",
<https://raw. gi t hubusercontent.coniarineng/jcr/ master/
j cr-abnf.txt>.

Kirkpatrick, S., Stahl, M, and M Recker, "Internet
nunbers”, RFC 1166, DA 10.17487/RFC1166, July 1990,
<https://www. rfc-editor.org/info/rfcll66>.

Klyne, G and C. Newran, "Date and Tine on the Internet:
Ti mestanps”, RFC 3339, DA 10.17487/RFC3339, July 2002,
<https://ww. rfc-editor.org/info/rfc3339>.

Berners-Lee, T., Fielding, R, and L. Masinter, "Uniform
Resource ldentifier (URI): Generic Syntax", STD 66,

RFC 3986, DA 10.17487/ RFC3986, January 2005,
<https://www. rfc-editor.org/info/rfc3986>.

Crocker, D., Ed. and P. Overell, "Augnmented BNF for Syntax
Speci fications: ABNF', RFC 4234, DO 10.17487/ RFC4234,
Cct ober 2005, <https://ww.rfc-editor.org/info/rfc4234>.

Newt on & Cor del | Expires April 1, 2018 [Page 39]

Internet-Draft JSON Content Rul es Sept enber 2017

[RFC4648] Josefsson, S., "The Basel6, Base32, and Base64 Data
Encodi ngs", RFC 4648, DO 10.17487/ RFC4648, Cctober 2006,
<https://www. rfc-editor.org/info/rfc4648>.

[RFC5322] Resnick, P., Ed., "Internet Message Format", RFC 5322,
DO 10.17487/ RFC5322, Cctober 2008,
<https://ww. rfc-editor.org/info/rfc5322>.

[RFC5952] Kawanura, S. and M Kawashima, "A Recommendation for |Pv6
Address Text Representation", RFC 5952,
DA 10. 17487/ RFC5952, August 2010,
<https://ww. rfc-editor.org/info/rfc5952>.

[RFC7159] Bray, T., Ed., "The JavaScript Object Notation (JSON) Data
I nterchange Format"”, RFC 7159, DO 10.17487/ RFC7159, March
2014, <https://ww.rfc-editor.org/info/rfc7159>.

10.2. Infomati ve References

[I-D.cordell-jcr-co-constraints]
Cordell, P. and A. Newton, "Co-Constraints for JSON
Content Rules", draft-cordell-jcr-co-constraints-00 (work
in progress), Mrch 2016.

[RFC7492] Bhatia, M, Zhang, D., and M Jethanandani, "Analysis of
Bi di rectional Forwarding Detection (BFD) Security
According to the Keying and Aut hentication for Routing
Prot ocol s (KARP) Design Guidelines", RFC 7492,
DO 10.17487/ RFC7492, March 2015,
<https://ww. rfc-editor.org/info/rfc7492>.

10.3. URIs
[1] https://github.confarineng/jcr/tree/ master/figs
Appendi x A, Co-Constraints

This specification defines a small set of annotations and directives
for JCR yet the syntax is extensible allow ng for other annotations
and directives. [I-D.cordell-jcr-co-constraints] ("Co-Constraints
for JCR') defines further annotations and directives which define
nore detail ed constraints on JSON nmessages, including co-constraints
(constraining parts of JSON nessage based on another part of a JSON
nmessage) .

Newt on & Cor del | Expires April 1, 2018 [Page 40]

Internet-Draft JSON Content Rul es Sept enber 2017

Appendi x B. Testing Agai nst JSON Content Rules
One aspect of JCR that differentiates it fromother format schema
| anguages are the nechani sns hel pful to devel opers for taking a
formal specification, such as that found in an RFC, and evolving it
into unit tests, which are essential to producing quality protoco
i mpl emrent ati ons.
B.1. Locally Overriding Rules
As nentioned in the introduction, one tool for testing would be the
ability to locally override naned rules. As an exanple, consider the
followi ng rule which defines an array of strings.
$statuses = [string *]

Figure 71
Consi der the specification where this rule is found does not define
the val ues but references an extensible list of possible values
updat ed i ndependently of the specification, such as in an | ANA
registry
If a software devel oper desired to test a specific situation in which
the array nust at least contain the status "accepted", the rules from
the specification could be used and the statuses rule could be
explicitly overridden |ocally as:
This rule will evaluate positively with the JSON in Figure 73

$statuses = @unordered} ["accepted", string *]
Figure 72
["submitted", "validated", "accepted"]
Fi gure 73

Al ternatively, the devel oper may need to ensure that the status
"deni ed" should not be present in the array:

This rule will fail to evaluate the JSON in Figure 75 thus signaling
a probl em

$statuses = @Qunordered} @not} ["denied" + , string *]

Fi gure 74

Newt on & Cor del | Expires April 1, 2018 [Page 41]

Internet-Draft JSON Content Rul es Sept enber 2017

["submitted", "validated", "denied"]
Figure 75
B.2. Rule Callbacks

In many testing scenarios, the evaluation of rules may becone nore
compl ex than that which can be expressed in JCR sonetimes involving
vari abl es and i nterdependenci es which can only be expressed in a
progranmm ng | anguage.

A JCR processor nmay provide a nmechani smfor the execution of |oca
functions or nethods based on the nanme of a rule being eval uated.
Such a mechani sm could pass to the function the data to be eval uated,
and that function could return to the processor the result of

eval uating the data in the function

Appendi x C. Changes from-07 and -08

This revision of the document makes no substantive changes to any
parts of the specification. Sone of the ABNF has been updated to
nmore correctly allow group rules, and other small change have been
made to the ABNF to nake it sinpler.

Aut hors’ Addr esses

Andrew Lee Newt on

Anerican Registry for Internet Nunbers
PO Box 232290

Centreville, VA 20120

us

Emai | : andy@ri n. net

URI : http://ww. arin. net

Pet e Cordel

Codal ogi ¢

PO Box 30

I pswich [|P5 2W

UK

Emai | . pete.cordel | @odal ogi c. com
URI : htt p://ww. codal ogi c. com

Newt on & Cor del | Expires April 1, 2018 [Page 42]

