Encapsulation of EAP Messages in CAPWAP Control Plane
draft-cao-capwap-eap-00

Abstract
This document describes the scenario and requirement of encapsulating Extensible Authentication Protocol (EAP) in the CAPWAP control plane. After the analysis and description, this document proposes the design of the new message types to encapsulate EAP messages.

Status of this Memo

This Internet-Draft is submitted in full conformance with the provisions of BCP 78 and BCP 79.

Internet-Drafts are working documents of the Internet Engineering Task Force (IETF). Note that other groups may also distribute working documents as Internet-Drafts. The list of current Internet-Drafts is at http://datatracker.ietf.org/drafts/current/.

Internet-Drafts are draft documents valid for a maximum of six months and may be updated, replaced, or obsoleted by other documents at any time. It is inappropriate to use Internet-Drafts as reference material or to cite them other than as "work in progress."

This Internet-Draft will expire on April 18, 2013.

Copyright Notice

Copyright (c) 2012 IETF Trust and the persons identified as the document authors. All rights reserved.

This document is subject to BCP 78 and the IETF Trust’s Legal Provisions Relating to IETF Documents (http://trustee.ietf.org/license-info) in effect on the date of publication of this document. Please review these documents carefully, as they describe your rights and restrictions with respect to this document. Code Components extracted from this document must include Simplified BSD License text as described in Section 4.e of the Trust Legal Provisions and are provided without warranty as described in the license.
described in the Simplified BSD License.

Table of Contents

1. Introduction .. 3
 1.1. Conventions used in this document 3
 1.2. Terminology .. 3
2. Scenario and Analysis .. 4
3. Encapsulation of EAP in CAPWAP-CTL Plane 4
 3.1. Control Message Type for EAP 5
 3.2. Message Element of the EAP 5
4. IANA Considerations .. 6
5. Security Considerations .. 6
6. Contributors .. 6
7. References .. 7
 7.1. Normative References 7
 7.2. Informative References 7
Authors’ Addresses .. 7
1. Introduction

Control and Provisioning of Wireless Access Points (CAPWAP) was designed as an interoperable protocol between the wireless access point and the access controller. This architecture makes it possible for the access controller to manage a huge number of wireless access points. With the goals and requirements established in [RFC4564], CAPWAP protocols were specified in [RFC5415], [RFC5416] and [RFC5417].

The specificaitons mentioned above mainly design the different control message types used by the AC to control multiple APs. The EAP messages, as key protocol exchange elements in the WLAN architecture also need to be encapsulated in the CAPWAP. However, the CAPWAP protocol does not specifies how to encapsulate the EAP message in its control plane. This situation makes it default to encapsulate the EAP messages in the CAPWAP-DATA plane.

We found issues of encapsulating EAP in the CAPWAP-DATA plane in the scenario where there is a split between the CAPWAP-DATA and CAPWAP-CTL plane. This document describes such scenario and proposes a resolution to the problem.

1.1. Conventions used in this document

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this document are to be interpreted as described in [RFC2119].

1.2. Terminology

Access Controller (AP): The network entity that provides AP access to the network infrastructure in the data plane, control plane, management plane, or a combination therein.

Access Point (AP): the same with Wireless Termination Point, The physical or network entity that contains an RF antenna and wireless Physical Layer (PHY) to transmit and receive station traffic for wireless access networks.

CAPWAP Control Plane: A bi-directional flow over which CAPWAP Control packets are sent and received.

CAPWAP Data Plane: A bi-directional flow over which CAPWAP Data packets are sent and received.

EAP: Extensible Authentication Protocol, the EAP framework is specified in [RFC3748].
2. Scenario and Analysis

The following figure shows where and how the problem arises. In many operators’ network, the Access Controller is placed remotely at the central data center. In order to avoid the traffic aggregation at the AC, the data traffic from the AP is directed to the Access Router (AR). In this scenario, the CAPWAP-CTL plane and CAPWAP-DATA plane are separated from each other.

Note: a powerful AC that aggregates the data flows is not a long-term solution to the problem. Because operators always plan the network capacity at a certain level, but with the air interface bandwidth increasing (e.g., from 11g to 11n and 11ac), and the increasing number of access requests on each AP, the powerful AC could not be "powerful" enough in the long run.

```
+-------+ AC |
//      +-------+
//      +-------+
CAPWAP-DATA +------------------------+ Access Router
           |                            |
           |                            |
           |                            |
           | AP                         |
+-------+-------------------------+
```

Figure 1: Split between CAPWAP-CTL and CAPWAP-DATA Plane

Because there are no explicit message types to support the encapsulation of EAP packets in the CAPWAP-CTL plane, the EAP messages are tunneled via the CAPWAP-DATA plane to the AR. AR acts as authenticator in the EAP framework. After authentication, the AR receives the EAP keying message for the session. But AC is supposed to deliver these keying messages to the AP, and AR has no standard interface to ship them to the AP or the AC. This is unacceptable in the scenario of EAP-based auto-authentication.

3. Encapsulation of EAP in CAPWAP-CTL Plane

In order to encapsulate EAP message in CAPWAP-CTL plane, we can reuse the control message header defined in RFC5415 and extend the message type to accommodate EAP messages.

The CAPWAP Control message header is shown in Figure 2. Only 26 message types have been defined in Section 4.5.5.1 of RFC5415. We can extend the message type here to encapsulate EAP messages.
3.1. Control Message Type for EAP

This document defines a new control message type for EAP, i.e. "AUTHENTICATION CONTROL". The message type value is to be defined by IANA.

```
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|      Message Type = AUTHENTICATION CONTROL                  |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|    Seq Num    |        Msg Element Length     |     Flags     |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Msg Element [0..N] ...                                       |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
```

Figure 3: The CAPWAP-EAP Control Message Header

The Seq Num is design to match the response with the request for other control messages like "Discovery Request" and "Discovery Response". But this field is not useful for authentication control, because the EAP message encapsulated between the AP and AC is not handled in a request-response way. For AUTHENTICATION CONTROL messages, the AP and AC do not need to handle the 'Seq Num' field.

Msg Element Length field indicates the number of bytes following the Sequence Number field.

Flags field is left for future definition.

3.2. Message Element of the EAP

The message element(s) carry the information pertinent to each of the control message types. Every control message in this specification specifies which message elements are permitted.
We define the message element of EAP message in the following figure.

```
0                   1                   2                   3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|  Type=Authentication Payload  |             Length            |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|   Value ...   |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
```

Message Element for EAP

Section 4.6 of RFC5415 defines the semantics of Message Element Types. Type values from 1-49 have been used. An extended message element type is requested by this document to carry the EAP authentication payload.

4. IANA Considerations

This document has the following requests to the IANA.

CAPWAP Control Message Type Value for the EAP-AUTHENTICATION-CONTROL, as defined in Section. 3.1 of this document.

CAPWAP Control Message Element Type Value for the EAP-AUTHENTICATION-PAYLOAD, as defined in Section. 3.2 of this document.

5. Security Considerations

Security considerations for the CAPWAP protocol has been analyzed in Section 12 of RFC5415. This document extends the CAPWAP CONTROL Message Type and Control Message Element Type, and it does not introduce other security issues besides what has been analyzed in RFC5415.

6. Contributors

This document stems from the joint work of Hui Deng, Hong Liu, Yifan Chen, Chunju Shao from China Mobile Research. Thank all the contributors of this document.

7. References
7.1. Normative References

7.2. Informative References

Authors’ Addresses

Rong Zhang
China Telecom
No.109 Zhongshandadao avenue
Guangzhou, 510630
China

Phone:
Fax:
Email: zhangr@gsta.com
URI:
Zhen Cao
China Mobile
Xuanwumenxi Ave. No. 32
Beijing, 100871
China

Phone: +86-10-52686688
Email: zehn.cao@gmail.com, caozhen@chinamobile.com

Haiyun Luo
China Mobile
United States

Phone:
Fax:
Email: haiyunluo@chinamobile.com
URI:
Management of Networks with Constrained Devices: Use Cases and Requirements
draft-ersue-constrained-mgmt-02

Abstract

This document raises the questions on and discusses the use cases and requirements for the management of networks with constrained devices.

Status of this Memo

This Internet-Draft is submitted in full conformance with the provisions of BCP 78 and BCP 79.

Internet-Drafts are working documents of the Internet Engineering Task Force (IETF). Note that other groups may also distribute working documents as Internet-Drafts. The list of current Internet-Drafts is at http://datatracker.ietf.org/drafts/current/.

Internet-Drafts are draft documents valid for a maximum of six months and may be updated, replaced, or obsoleted by other documents at any time. It is inappropriate to use Internet-Drafts as reference material or to cite them other than as "work in progress."

This Internet-Draft will expire on April 18, 2013.

Copyright Notice

Copyright (c) 2012 IETF Trust and the persons identified as the document authors. All rights reserved.

This document is subject to BCP 78 and the IETF Trust’s Legal Provisions Relating to IETF Documents (http://trustee.ietf.org/license-info) in effect on the date of publication of this document. Please review these documents carefully, as they describe your rights and restrictions with respect to this document. Code Components extracted from this document must include Simplified BSD License text as described in Section 4.e of the Trust Legal Provisions and are provided without warranty as Ersue, et al. Expires April 18, 2013 [Page 1]
Table of Contents

1. Introduction ... 4
 1.1. Overview ... 4
 1.2. Terminology .. 5
 1.3. Constrained Device Classes 6
 1.4. Class of Networks in Focus 7
 1.5. Network Topology Options 9
 1.6. Management Topology Options 9
 1.7. Managing the Constrainedness of a Device or Network 10
2. Problem Statement .. 13
3. Use Cases .. 15
 3.1. Environmental Monitoring 15
 3.2. Medical Applications ... 15
 3.3. Industrial Applications 16
 3.4. Home Automation .. 17
 3.5. Building Automation .. 18
 3.6. Energy Management .. 20
 3.7. Transport Applications 21
 3.8. Infrastructure Monitoring 22
 3.9. Community Network Applications 23
 3.10. Mobile Applications ... 25
 3.11. Automated Metering Infrastructure 26
 3.12. MANET Concept of Operations (CONOPS) in Military 28
4. Requirements on the Management of Networks with Constrained Devices ... 34
 4.1. Management Architecture/System 34
 4.2. Management protocols and data model 39
 4.3. Configuration management 42
 4.4. Monitoring functionality 45
 4.5. Self-management .. 51
 4.6. Security and Access Control 52
 4.7. Energy Management .. 56
 4.8. SW Distribution .. 58
 4.9. Traffic management .. 59
 4.10. Transport Layer .. 60
 4.11. Implementation Requirements 62
5. Gaps in Network Management Standards ... 64
6. IANA Considerations .. 65
7. Security Considerations .. 66
8. Contributors .. 67
9. Acknowledgments .. 68
10. References .. 69
 10.1. Normative References 69
 10.2. Informative References 69
1. Introduction

1.1. Overview

Small devices with limited CPU, memory, and power resources, so-called constrained devices (aka. sensor, smart object, or smart device) can constitute a network. Such a network of constrained devices itself may be constrained or challenged, e.g. with unreliable or lossy channels, wireless technologies with limited bandwidth and a dynamic topology, needing the service of a gateway or proxy to connect to the Internet. In other scenarios, the constrained devices can be connected to a non-constrained network using off-the-shelf protocol stacks.

Constrained devices might be in charge of gathering information in diverse settings including natural ecosystems, buildings, and factories and send the information to one or more server stations. Constrained devices may work under severe resource constraints such as limited battery and computing power, little memory and insufficient wireless bandwidth, and communication capabilities. A central entity, e.g., a base station or controlling server, might have more computational and communication resources and can act as a gateway between the constrained devices and the application logic in the core network.

Today diverse size of small devices with different resources and capabilities are becoming connected. Mobile personal gadgets, building-automation devices, cellular phones, Machine-to-machine (M2M) devices, etc. benefit from interacting with other "things" in the near or somewhere in the Internet. With this the Internet of Things (IoT) becomes a reality build up of uniquely identifiable objects (things). And over the next decade, this could grow to trillions of constrained devices and will greatly increase the Internet’s size and scope.

Network management is characterized by monitoring network status, detecting faults, and inferring their causes, setting network parameters, and carrying out actions to remove faults, maintain normal operation, and improve network efficiency and application performance. The traditional network management application periodically collects information from a set of elements that are needed to manage, processes the data, and presents them to the network management users. Constrained devices, however, often have limited power, low transmission range, and might be unreliable. They might also need to work in hostile environments with advanced security requirements or need to be used in harsh environments for a long time without supervision. Due to such constraints, the management of a network with constrained devices offers different
The IETF has already done a lot of standardization work to enable the communication in IP networks and to manage such networks as well as the manifold type of nodes in these networks [RFC6632]. However, the IETF so far has not developed any specific technologies for the management of constrained devices and the networks comprised by constrained devices. IP-based sensors or constrained devices in such an environment, i.e., devices with very limited memory and CPU resources, use today application-layer protocols in an ad-hoc manner to do simple resource management and monitoring.

This document raises the questions on and aims to understand the use cases, requirements, and the required solution space for the management of a network with constrained devices. The document especially aims to avoid recommending any particular solutions. Section 1.5 and Section 1.6 describe different topology options for the networking and management of constrained devices. Section 1.3 explains the classes with which constrained devices can be categorized. Section 2 aims to provide a problem statement on the issue of the management of networked constrained devices. Section 3 lists diverse use cases and scenarios for the management from the network as well as from the application point of view. Section 4 lists requirements on the management of applications and networks with constrained devices. Note that the requirements in Section 4 need to be seen as standalone requirements. As of today this document does not recommend the realization of a profile of requirements.

1.2. Terminology

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this document are to be interpreted as described in [RFC2119].

The following terms are used throughout this documentation:

Client: The originating endpoint of a request; the destination endpoint of a response.

Constrained Device: A device with resource constraints, e.g., limited amount of memory, limited processing capabilities, limited energy supply.
Constrained Network: A network constrained in resources, e.g., bandwidth, latency, or data rate.

Intermediary entity: As defined in the CoAP document an intermediary entity can be a CoAP endpoint that acts both as a server and as a client towards (possibly via further intermediaries) an origin server. An intermediary entity can be used to support hierarchical management.

Network of Constrained Devices: A network to which constrained devices are connected. It may or may not be a Constrained Network.

MANET: Mobile Ad-hoc Networks, a self-configuring infrastructureless network of mobile devices connected by wireless technologies.

Mote: A sensor node in a wireless network that is capable of performing some limited processing, gathering sensory information and communicating with other connected nodes in the network.

Server: The destination endpoint of a request; the originating endpoint of a response.

1.3. Constrained Device Classes

To organize the discussion, it is often useful to have some succinct terminology for different classes of constrained devices. Following [I-D.ietf-lwig-guidance], we distinguish the following classes:

<table>
<thead>
<tr>
<th>Name</th>
<th>data size (e.g., RAM)</th>
<th>code size (e.g., Flash)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Class 0</td>
<td><< 10 KiB</td>
<td><< 100 KiB</td>
</tr>
<tr>
<td>Class 1</td>
<td>~ 10 KiB</td>
<td>~ 100 KiB</td>
</tr>
<tr>
<td>Class 2</td>
<td>~ 50 KiB</td>
<td>~ 250 KiB</td>
</tr>
</tbody>
</table>

Table 1: Classes of Constrained Devices

Class 0 (C0) devices are very constrained sensor-like motes. Most likely they will not have the possibility to communicate directly with the Internet in a secure manner. The Class 0 devices will participate in Internet communications with the help of larger devices acting as proxy or gateways. It is assumed that C0 devices cannot be managed comprehensively in the traditional sense. They will be most likely preconfigured and if ever will be reconfigured.
rarely with a very small data set. At most, they could answer keep-
alive signals and send on/off or basic health indications.

Class 1 (C1) devices cannot easily talk to other Internet nodes with
a full protocol stack using HTTP, TLS and related security protocols,
and XML-based data representations. However, they have enough power
to use a reduced or lightweight protocol stack (e.g. CoAP over UDP)
and participate in meaningful conversations without the help of a
gateway node. Therefore, they can be integrated into an IP network
in one way or the other but need to spare with memory for the
protocol and application usage.

Class 2 (C2) can support mostly the same protocol stack as used on
notebooks or servers. However, even these devices can benefit from
lightweight and energy-efficient protocols and consuming less
bandwidth on air. Furthermore, using less network resources would
leave more resources available to applications. As such using the
same protocol stack on Class 1 and 2 devices might reduce development
costs and increase the interoperability.

For C1 devices, it is indeed important to understand what type of
applications they could run and which management mechanisms would be
most suitable. Because of memory and other limitations, C1 devices
might be able to support only a few selected functions at any given
time. As such, the set of supported functions is not static per
device type, IOW devices with similar constraints might choose to
support different functions. Even though they have some more
functionality available, C2 devices need to be assessed for the type
of applications they will be running and the management they would
need. To be able to derive the requirements, the uses cases and the
involvement of the devices in the management scenario need to be
analyzed. The use cases where C1 or C2 devices build a cluster or
are part of a hierarchy as well as the assumed degree of automation
might be essentially important.

C1 and C2 devices are typically driven by 8-bit or 16-bit processors
and they have in common that they are severely constrained by the
amount of memory they can use. However, there are also a number of
devices that can afford to have 32-bit processors and memory sizes
counted in MiB instead of KiB. While such devices are easily capable
to run a complete IP protocol stack, they still can be constrained by
a limited energy supply. We will call this class of devices power
constrained devices.

1.4. Class of Networks in Focus

In this document we differentiate following network types:
(Note that a network in general can involve non-constrained and constrained devices.)

- Wireline non-constrained networks (CN0), e.g. an Ethernet-LAN with non-constrained and constrained devices involved.

- A combination of wireline and wireless networks (CN1), which may or may not be mesh-based but have a multi-hop connectivity between constrained devices, utilizing dynamic routing in both the wireless and wireline portions of the network. CN1 networks usually support highly distributed applications with many nodes (e.g. environmental monitoring). CN1 networks tend to deal with large-scale multipoint-to-point systems with massive data flows. Wireless Mesh Networks (WMN), as a specific type of CN1 networks, use off-the-shelf radio technology such as Wi-Fi, WiMax, and cellular 3G/4G. WMNs are reliable based on the redundancy they offer and have often a more planned deployment to provide dynamic and cost effective connectivity over a certain geographic area.

- A combination of wireline and wireless networks with point-to-point or point-to-multipoint communication (CN2) generally with single-hop connectivity to constrained devices, utilizing static routing over the wireless network. CN2 networks support short-range, point-to-point, low-data-rate, source-to-sink type of applications such as RFID systems, light switches, fire and smoke detectors, and home appliances. CN2 networks usually support confined short-range spaces such as a home, a factory, a building, or the human body. IEEE 802.15.1 (Bluetooth) and IEEE 802.15.4 are well-known examples of applicable standards for CN2 networks.

- Mobile Adhoc networks (MANET) are self-configuring _infrastructureless_ networks of mobile devices connected by wireless technologies. MANETs are based on point-to-point communications of devices moving independently in any direction and changing the links to other devices frequently. MANET devices do act as a router to forward traffic unrelated to their own use.

Note that the discussion on the management requirements of MANETs is currently not in the focus of this document. The use case in Section 3.4 has been provided to make it clear how a MANET-based application differs from others.

A CN0 network is used for specific applications like Building Automation or Infrastructure Monitoring. However, CN1 and CN2 networks are especially in the interest of the analysis on the management of constrained devices in this document.
1.5. Network Topology Options

We differentiate following topology options for the networks of constrained devices:

- a network of constrained devices, which communicate with each other,
- Constrained devices, which are connected directly to the Internet or a bigger IP network
- A network of constrained devices which communicate with a gateway or proxy with more communication capabilities acting possibly as a representative of the device to entities in the non-constrained network
- Constrained devices, which are connected to the Internet or a bigger IP network via a gateway/proxy
- A hierarchy of constrained devices, e.g., a network of C0 devices connected to one or more C1 devices - connected to one or more C2 devices - connected to one or more gateways - connected to some application servers or NMS system
- The possibility of device grouping (possibly in a dynamic manner) such as that the grouped devices can act as one logical device at the edge of the network and one device in this group can act as the managing entity

1.6. Management Topology Options

We differentiate following options for the management of networks of constrained devices:

- A network of constrained devices managed by one central manager. A logically centralized management might be implemented in a hierarchical fashion for scalability and robustness reasons. The manager and the management application logic might have a gateway/proxy in between or might be on different nodes in different networks, e.g., management application running on a cloud server.
- Distributed management, where a constrained network is managed by more than one manager. Each manager controls a subnetwork and may communicate directly with other manager stations in a cooperative fashion. The distributed management may be weakly distributed, where functions are broken down and assigned to many managers dynamically, or strongly distributed, where almost all managed things have embedded management functionality and explicit
management disappears, which usually comes with the price that the strongly distributed management logic now needs to be managed.

- Hierarchical management, where a hierarchy of constrained networks are managed by the managers at their corresponding hierarchy level. I.e. each manager is responsible for managing the nodes in its sub-network. It passes information from its sub-network to its higher-level manager, and disseminates management functions received from the higher-level manager to its sub-network. Hierarchical management is essentially a scalability mechanism, logically the decision-making may be still centralized.

1.7. Managing the Constrainedness of a Device or Network

The capabilities of a constrained device or network and the constrainedness thereof influence and have an impact on the requirements for the management of such network or devices.

A constrained device:

- might only support an unreliable radio with lossy links, i.e. the client and server of a management protocol need to gracefully ignore incomplete commands or repeat commands as necessary.

- might only be able to go online from time-to-time, where it is reachable, i.e. a command might be necessary to repeat after a longer timeout or the timeout value with which one endpoint waits on a response needs to be sufficiently high.

- might only be able to support a limited operating time (e.g. based on the available battery), i.e. the devices need to economize their energy usage with suitable mechanisms and the managing entity needs to monitor and control the energy status of the constrained devices it manages.

- might only be able to support one simple communication protocol, i.e. the management protocol needs to be possible to downscale from constrained (C2) to very constrained (C0) devices with modular implementation and a very basic version with just a few simple commands.

- might only be able to support limited or no user and/or transport security, i.e. the management system needs to support a less-costly and simple but sufficiently secure authentication mechanism.

- might not be able to support compression and decompression of exchanged data based on limited CPU power, i.e. an intermediary
entity which is capable of data compression should be able to communicate with both, devices, which support data compression (e.g. C2) and devices, which do not support data compression (e.g. C1 and C0).

- might only be able to support very simple encryption, i.e. it would be efficient if the devices use cryptographic algorithms that are supported in hardware.
- might only be able to communicate with one single managing entity and cannot support the parallel access of many managing entities.
- might depend on a self-configuration feature, i.e. the managing entity might not know all devices in a network and the device needs to be able to initiate connection setup for the device configuration.
- might depend on self- or neighbor-monitoring feature, i.e. the managing entity might not be able to monitor all devices in a network continuously.
- might only be able to communicate with its neighbors, i.e. the device should be able to get its configuration from a neighbor.
- might only be able to support parsing of data models with limited size, i.e. the device data models need to be compact containing the most necessary data and if possible parsable as a stream.
- might only be able to support a limited or no failure detection, i.e. the managing entity needs to handle the situation, where a failure does not get detected or gets detected late gracefully e.g. with asking repeatedly.
- might only be able to support the reporting of just one or a limited set failure types.
- might only be able to support a limited set of notifications, possible only an "I-am-alive" message.
- might only be able to support a soft-reset from failure recovery.
- might possibly generate a huge amount of redundant reporting data, i.e. the intermediary management entity should be able to filter and aggregate redundant data.

A constrained network:
o might only support an unreliable radio with lossy links, i.e. the client and server of a management protocol need to repeat commands as necessary or gracefully ignore incomplete commands.

o might be necessary to manage based on multicast communication, i.e. the managing entity needs to be prepared to configure many devices at once based on the same data model.

o might have a very large topology supporting 10,000 or more nodes for some applications and as such node naming is a specific issue for constrained networks.

o must be able to self-organize, i.e. given the large number of nodes and their potential placement in hostile locations and frequently changing topology, manual configuration is typically not feasible. As such the network must be able to reconfigure itself so that it can continue to operate properly and support reliable connectivity.

o needs a management solution, which is energy-efficient, using as little wireless bandwidth as possible since communication is highly energy demanding.

o needs to support localization schemes to determine the location of devices since the devices might be moving and location information is important for some applications.

o needs a management solution, which is scalable as the network may consist of thousands of nodes and may need to be extended continuously.

o needs to provide fault tolerance. Faults in network operation including hardware and software errors, failures detected by the transport protocol and other self-monitoring mechanisms can be used to provide fault tolerance.

o might require new management capabilities: for example, network coverage information and a constrained device power-distribution-map.

o might require a new management function for data management, since the type and amount of data collected in constrained networks is different from those of the traditional networks.

o might also need energy-efficient key management algorithms for security.
2. Problem Statement

The terminology for the "Internet of Things" is still nascent, and depending on the network type or layer in focus diverse technologies and terms are in use. Common to all these considerations is the "Things" or "Objects" are supposed to have physical or virtual identities using interfaces to communicate. In this context, we need to differentiate between the Constrained and Smart Devices identified by an IP address compared to virtual entities such as Smart Objects, which can be identified as a resource or a virtual object by using a unique identifier. Furthermore, the smart devices usually have a limited memory and CPU power as well as aim to be self-configuring and easy to deploy.

However, the tininess of the network nodes requires a rethinking of the protocol characteristics concerning power consumption, performance, memory, and CPU usage. As such, there is a demand for protocol simplification, energy-efficient communication, less CPU usage and small memory footprint.

On the application layer the IETF is already developing protocols like the Constrained Application Protocol (CoAP) [I-D.ietf-core-coap] supporting constrained devices and networks e.g., for smart energy applications or home automation environments. The deployment of such an environment involves in fact many, in some scenarios up to million small devices (e.g. smart meters), which produce a huge amount of data. This data needs to be collected, filtered, and pre-processed for further use in diverse services.

Considering the high number of nodes to deploy, one has to think on the manageability aspects of the smart devices and to plan for easy deployment, configuration, and management of the networks of constrained devices as well as the devices themselves. Consequently, seamless monitoring and self-configuration of such network nodes becomes more and more imperative. Self-configuration and self-management is already a reality in the standards of some of the bodies such as 3GPP. To introduce self-configuration of smart devices successfully a device-initiated connection establishment is required.

A simple application layer protocol, such as CoAP, is essential to address the issue of efficient object-to-object communication and information exchange. Such an information exchange should be done based on interoperable data models to enable the exchange and interpretation of diverse application and management related data.

In an ideal world, we would have only one network management protocol for monitoring, configuration, and exchanging management data,
independently of the type of the network (e.g., Smart Grid, wireless access, or core network). Furthermore, it would be desirable to derive the basic data models for constrained devices from the core models used today to enable reuse of functionality and end-to-end information exchange. However, the current management protocols seem to be too heavyweight compared to the capabilities the constrained devices have and are not applicable directly for the use in a network of constrained devices. Furthermore, the data models addressing the requirements of such smart devices need yet to be designed.

The IETF so far has not developed any specific technologies for the management of constrained devices and the networks comprised by constrained devices. IP-based sensors or constrained devices in such an environment, i.e., devices with very limited memory and CPU resources, use today, e.g., application-layer protocols to do simple resource management and monitoring. This might be sufficient for some basic cases, however, there is a need to reconsider the network management mechanisms based on the new, changed, as well as reduced requirements coming from smart devices and the network of such constrained devices. Albeit it is questionable whether we can take the same comprehensive approach we use in an IP network also for the management of constrained devices. Hence, the management of a network with constrained devices might become necessary to design as much as possible simplified and less complex.
3. Use Cases

This section discusses some application scenarios where networks of constrained devices are expected to be deployed. For each application scenario, we first briefly describe the characteristics followed by a discussion how network management can be provided, who is likely going to be responsible for it, and on which time-scale management operations are likely to be carried out.

3.1. Environmental Monitoring

Environmental monitoring applications are characterized by the deployment of a number of sensors to monitor emissions, water quality, or even the movements and habits of wildlife. Other applications in this category include earthquake or tsunami early-warning systems. The sensors often span a large geographic area, they can be mobile, and they are often difficult to replace. Furthermore, the sensors are usually not protected against tampering.

Management of environmental monitoring applications is largely concerned with the monitoring whether the system is still functional and the roll-out of new constrained devices in case the system looses too much of its structure. The constrained devices themselves need to be able to establish connectivity (auto-configuration) and they need to be able to deal with events such as loosing neighbors or being moved to other locations.

Management responsibility typically rests with the organization running the environmental monitoring application. Since these monitoring applications must be designed to tolerate a number of failures, the time scale for detecting and recording failures is for some of these applications likely measured in hours and repairs might easily take days. However, for certain environmental monitoring applications, much tighter time scales may exist and might be enforced by regulations (e.g., monitoring of nuclear radiation).

3.2. Medical Applications

Constrained devices can be seen as an enabling technology for advanced and possibly remote health monitoring and emergency notification systems, ranging from blood pressure and heart rate monitors to advanced devices capable to monitor implanted technologies, such as pacemakers or advanced hearing aids. Medical sensors may not only be attached to human bodies, they might also exist in the infrastructure used by humans such as bathrooms or kitchens. Medical applications will also be used to ensure treatments are being applied properly and they might guide people losing orientation. Fitness and wellness applications, such as
connected scales or wearable heart monitors, encourage consumers to exercise and empower self-monitoring of key fitness indicators. Different applications use Bluetooth, Wi-Fi or Zigbee connections to access the patient’s smartphone or home cellular connection to access the Internet.

Constrained devices that are part of medical applications are managed either by the users of those devices or by an organization providing medical (monitoring) services for physicians. In the first case, management must be automatic and or easy to install and setup by average people. In the second case, it can be expected that devices be controlled by specially trained people. In both cases, however, it is crucial to protect the privacy of the people to which medical devices are attached. Even though the data collected by a heart beat monitor might be protected, the pure fact that someone carries such a device may need protection. As such, certain medical appliances may not want to participate in discovery and self-configuration protocols in order to remain invisible.

Many medical devices are likely to be used (and relied upon) to provide data to physicians in critical situations since the biggest market is likely elderly and handicapped people. As such, fault detection of the communication network or the constrained devices becomes a crucial function that must be carried out with high reliability and, depending on the medical appliance and its application, within seconds.

3.3. Industrial Applications

Industrial Applications and smart manufacturing refer not only to production equipment, but also to a factory that carries out centralized control of energy, HVAC (heating, ventilation, and air conditioning), lighting, access control, etc. via a network. For the management of a factory it is becoming essential to implement smart capabilities. From an engineering standpoint, industrial applications are intelligent systems enabling rapid manufacturing of new products, dynamic response to product demand, and real-time optimization of manufacturing production and supply chain networks. Potential industrial applications e.g. for smart factories and smart manufacturing are:

- Digital control systems with embedded, automated process controls, operator tools, as well as service information systems optimizing plant operations and safety.
- Asset management using predictive maintenance tools, statistical evaluation, and measurements maximizing plant reliability.
- Smart sensors detecting anomalies to avoid abnormal or catastrophic events.
- Smart systems integrated within the industrial energy management system and externally with the smart grid enabling real-time energy optimization.

Sensor networks are an essential technology used for smart manufacturing. Measurements, automated controls, plant optimization, health and safety management, and other functions are provided by a large number of networked sectors. Data interoperability and seamless exchange of product, process, and project data are enabled through interoperable data systems used by collaborating divisions or business systems. Intelligent automation and learning systems are vital to smart manufacturing but must be effectively integrated with the decision environment. Wireless sensor networks (WSN) have been developed for machinery Condition-based Maintenance (CBM) as they offer significant cost savings and enable new functionalities. Inaccessible locations, rotating machinery, hazardous areas, and mobile assets can be reached with wireless sensors. WSNs can provide today wireless link reliability, real-time capabilities, and quality-of-service and enable industrial and related wireless sense and control applications.

Management of industrial and factory applications is largely focused on the monitoring whether the system is still functional, real-time continuous performance monitoring, and optimization as necessary. The factory network might be part of a campus network or connected to the Internet. The constrained devices in such a network need to be able to establish configuration themselves (auto-configuration) and might need to deal with error conditions as much as possible locally. Access control has to be provided with multi-level administrative access and security. Support and diagnostics can be provided through remote monitoring access centralized outside of the factory.

Management responsibility is typically owned by the organization running the industrial application. Since the monitoring applications must handle a potentially large number of failures, the time scale for detecting and recording failures is for some of these applications likely measured in minutes. However, for certain industrial applications, much tighter time scales may exist, e.g. in real-time, which might be enforced by the manufacturing process or the use of critical material.

3.4. Home Automation

Home automation includes the control of lighting, heating, ventilation, air conditioning, appliances, and entertainment devices
to improve convenience, comfort, energy efficiency, and security. It can be seen as a residential extension of building automation.

Home automation networks need a certain amount of configuration (associating switches or sensors to actors) that is either provided by electricians deploying home automation solutions or done by residents by using the application user interface to configure (parts of) the home automation solution. Similarly, failures may be reported via suitable interfaces to residents or they might be recorded and made available to electricians in charge of the maintenance of the home automation infrastructure.

The management responsibility lies either with the residents or it may be outsourced to electricians providing management of home automation solutions as a service. The time scale for failure detection and resolution is in many cases likely counted in hours to days.

3.5. Building Automation

Building automation comprises the distributed systems designed and deployed to monitor and control the mechanical, electrical and electronic systems inside buildings with various destinations (e.g., public and private, industrial, institutions, or residential). Advanced Building Automation Systems (BAS) may be deployed concentrating the various functions of safety, environmental control, occupancy, security. More and more the deployment of the various functional systems is connected to the same communication infrastructure (possibly Internet Protocol based), which may involve wired or wireless communications networks inside the building.

Building automation requires the deployment of a large number (10-100,000) of sensors that monitor the status of devices, and parameters inside the building and controllers with different specialized functionality for areas within the building or the totality of the building. Inter-node distances between neighboring nodes vary between 1 to 20 meters. Contrary to home automation in building management all devices are known to a set of commissioning tools and a data storage, such that every connected device has a known origin. The management includes verifying the presence of the expected devices and detecting the presence of unwanted devices.

Examples of functions performed by such controllers are regulating the quality, humidity, and temperature of the air inside the building and lighting. Other systems may report the status of the machinery inside the building like elevators, or inside the rooms like projectors in meeting rooms. Security cameras and sensors may be deployed and operated on separate dedicated infrastructures connected
to the common backbone. The deployment area of a BAS is typically inside one building (or part of it) or several buildings geographically grouped in a campus. A building network can be composed of subnets, where a subnet covers a floor, an area on the floor, or a given functionality (e.g. security cameras).

Some of the sensors in Building Automation Systems (for example fire alarms or security systems) register, record and transfer critical alarm information and therefore must be resilient to events like loss of power or security attacks. This leads to the need that some components and subsystems operate in constrained conditions and are separately certified. Also in some environments, the malfunctioning of a control system (like temperature control) needs to be reported in the shortest possible time. Complex control systems can misbehave, and their critical status reporting and safety algorithms need to be basic and robust and perform even in critical conditions.

Building Automation solutions are deployed in some cases in newly designed buildings, in other cases it might be over existing infrastructures. In the first case, there is a broader range of possible solutions, which can be planned for the infrastructure of the building. In the second case the solution needs to be deployed over an existing structure taking into account factors like existing wiring, distance limitations, the propagation of radio signals over walls and floors. As a result, some of the existing WLAN solutions (e.g. IEEE 802.11 or IEEE 802.15) may be deployed. In mission-critical or security sensitive environments and in cases where link failures happen often, topologies that allow for reconfiguration of the network and connection continuity may be required. Some of the sensors deployed in building automation may be very simple constrained devices for which class 0 or class 1 may be assumed.

For lighting applications, groups of lights must be defined and managed. Commands to a group of light must arrive within 200 ms at all destinations. The installation and operation of a building network has different requirements. During the installation, many stand-alone networks of a few to 100 nodes co-exist without a connection to the backbone. During this phase, the nodes are identified with a network identifier related to their physical location. Devices are accessed from an installation tool to connect them to the network in a secure fashion. During installation, the setting of parameters to common values to enable interoperability may occur (e.g. Trickle parameter values). During operation, the networks are connected to the backbone while maintaining the network identifier to physical location relation. Network parameters like address and name are stored in DNS. The names can assist in determining the physical location of the device.
3.6. Energy Management

EMAN working group developed [I-D.ietf-eman-framework], which defines a framework for providing Energy Management for devices within or connected to communication networks. This document observes that one of the challenges of energy management is that a power distribution network is responsible for the supply of energy to various devices and components, while a separate communication network is typically used to monitor and control the power distribution network. Devices that have energy management capability are defined as Energy Devices and identified components within a device (Energy Device Components) can be monitored for parameters like Power, Energy, Demand and Power Quality. If a device contains batteries, they can be also monitored and managed.

Energy devices differ in complexity and may include basic sensors or switches, specialized electrical meters, or power distribution units (PDU), and subsystems inside the network devices (routers, network switches) or home or industrial appliances. An Energy Management System is a combination of hardware and software used to administer a network with the primary purpose being Energy Management. The operators of such a system are either the utility providers or customers that aim to control and reduce the energy consumption and the associated costs. The topology in use differs and the deployment can cover areas from small surfaces (individual homes) to large geographical areas. EMAN requirements document [I-D.ietf-eman-requirements] discusses the requirements for energy management concerning monitoring and control functions.

It is assumed that Energy Management will apply to a large range of devices of all classes and networks topologies. Specific resource monitoring like battery utilization and availability may be specific to devices with lower physical resources (device classes C0 or C1).

Energy Management is especially relevant to Smart Grid. A Smart Grid is an electrical grid that uses data networks to gather and act on energy and power-related information, in an automated fashion with the goal to improve the efficiency, reliability, economics, and sustainability of the production and distribution of electricity. As such Smart Grid provides sustainable and reliable generation, transmission, distribution, storage and consumption of electrical energy based on advanced energy and ICT solutions and as such enables e.g. following specific application areas: Smart transmission systems, Demand Response/Load Management, Substation Automation, Advanced Distribution Management, Advanced Metering Infrastructure (AMI), Smart Metering, Smart Home and Building Automation, E-mobility, etc.
Smart Metering is a good example of a M2M application and can be realized as one of the vertical applications in an M2M environment. Different types of possibly wireless small meters produce all together a huge amount of data, which is collected by a central entity and processed by an application server. The M2M infrastructure can be provided by a mobile network operator as the meters in urban areas will have most likely a cellular or WiMAX radio.

Smart Grid is built on a distributed and heterogeneous network and can use a combination of diverse networking technologies, such as wireless Access Technologies (WiMAX, Cellular, etc.), wireline and Internet Technologies (e.g., IP/MPLS, Ethernet, SDH/PDH over Fiber optic, etc.) as well as technologies enabling the networking of smart meters, home appliances, and constrained devices (e.g. BT-LE, ZigBee, Z-Wave, Wi-Fi, etc.). The operational effectiveness of the smart grid is highly dependent on a robust, two-way, secure, and reliable communications network with suitable availability.

The management of a distributed system like smart grid requires an end-to-end management of and information exchange through different type of networks. However, as of today there is no integrated smart grid management approach and no common smart grid information model available. Specific smart grid applications or network islands use their own management mechanisms. For example, the management of smart meters depends very much on the AMI environment they have been integrated to and the networking technologies they are using. In general, smart meters do only need seldom reconfiguration and they send a small amount of redundant data to a central entity. For a discussion on the management needs of an AMI network see Section 3.11. The management needs for Smart Home and Building Automation are discussed in Section 3.4 and Section 3.5.

3.7. Transport Applications

Transport Application is a generic term for the integrated application of communications, control, and information processing in a transportation system. Transport telematics or vehicle telematics are used as a term for the group of technologies that support transportation systems. Transport applications running on such a transportation system cover all modes of the transport and consider all elements of the transportation system, i.e. the vehicle, the infrastructure, and the driver or user, interacting together dynamically. The overall aim is to improve decision making, often in real time, by transport network controllers and other users, thereby improving the operation of the entire transport system. As such, transport applications can be seen as one of the important M2M service scenarios with the involvement of manifold small devices.
The definition encompasses a broad array of techniques and approaches that may be achieved through stand-alone technological applications or as enhancements to other transportation communication schemes. Examples for transport applications are inter and intra vehicular communication, smart traffic control, smart parking, electronic toll collection systems, logistic and fleet management, vehicle control, and safety and road assistance.

As a distributed system, transport applications require an end-to-end management of different types of networks. It is likely that constrained devices in a network (e.g. a moving in-car network) have to be controlled by an application running on an application server in the network of a service provider. Such a highly distributed network including mobile devices on vehicles is assumed to include a wireless access network using diverse long distance wireless technologies such as WiMAX, 3G/LTE or satellite communication, e.g. based on an embedded hardware module. As a result, the management of constrained devices in the transport system might be necessary to plan top-down and might need to use data models obliged from and defined on the application layer. The assumed device classes in use are mainly C2 devices. In cases, where an in-vehicle network is involved, C1 devices with limited capabilities and a short-distance constrained radio network, e.g. IEEE 802.15.4 might be used additionally.

Management responsibility typically rests within the organization running the transport application. The constrained devices in a moving transport network might be initially configured in a factory and a reconfiguration might be needed only rarely. New devices might be integrated in an ad-hoc manner based on self-management and self-configuration capabilities. Monitoring and data exchange might be necessary to do via a gateway entity connected to the back-end transport infrastructure. The devices and entities in the transport infrastructure need to be monitored more frequently and can be able to communicate with a higher data rate. The connectivity of such entities does not necessarily need to be wireless. The time scale for detecting and recording failures in a moving transport network is likely measured in hours and repairs might easily take days. It is likely that a self-healing feature would be used locally.

3.8. Infrastructure Monitoring

Infrastructure monitoring is concerned with the monitoring of infrastructures such as bridges, railway tracks, or (offshore) windmills. The primary goal is usually to detect any events or changes of the structural conditions that can impact the risk and safety of the infrastructure being monitored. Another secondary goal is to schedule repair and maintenance activities in a cost effective...
The infrastructure to monitor might be in a factory or spread over a wider area but difficult to access. As such, the network in use might be based on a combination of fixed and wireless technologies, which use robust networking equipment and support reliable communication. It is likely that constrained devices in such a network are mainly C2 devices and have to be controlled centrally by an application running on a server. In case such a distributed network is widely spread, the wireless devices might use diverse long-distance wireless technologies such as WiMAX, or 3G/LTE, e.g. based on embedded hardware modules. In cases, where an in-building network is involved, the network can be based on Ethernet or wireless technologies suitable for in-building usage.

The management of infrastructure monitoring applications is primarily concerned with the monitoring of the functioning of the system. Infrastructure monitoring devices are typically rolled out and installed by dedicated experts and changes are rare since the infrastructure itself changes rarely. However, monitoring devices are often deployed in unsupervised environments and hence special attention must be given to protecting the devices from being modified.

Management responsibility typically rests with the organization owning the infrastructure or responsible for its operation. The time scale for detecting and recording failures is likely measured in hours and repairs might easily take days. However, certain events (e.g., natural disasters) may require that status information be obtained much more quickly and that replacements of failed sensors can be rolled out quickly (or redundant sensors are activated quickly). In case the devices are difficult to access, a self-healing feature on the device might become necessary.

3.9. Community Network Applications

Community networks are comprised of constrained routers in a multi-hop mesh topology, communicating over a lossy, and often wireless channel. While the routers are mostly non-mobile, the topology may be very dynamic because of fluctuations in link quality of the (wireless) channel caused by, e.g., obstacles, or other nearby radio transmissions. Depending on the routers that are used in the community network, the resources of the routers (memory, CPU) may be more or less constrained - available resources may range from only a few kilobytes of RAM to several megabytes or more, and CPUs may be small and embedded, or more powerful general-purpose processors. Examples of such community networks are the FunkFeuer network (Vienna, Austria), FreiFunk (Berlin, Germany), Seattle Wireless
These community networks are public and non-regulated, allowing their users to connect to each other and — through an uplink to an ISP — to the Internet. No fee, other than the initial purchase of a wireless router, is charged for these services. Applications of these community networks can be diverse, e.g., location based services, free Internet access, file sharing between users, distributed chat services, social networking etc, video sharing etc.

As an example of a community network, the FunkFeuer network comprises several hundred routers, many of which have several radio interfaces (with omnidirectional and some directed antennas). The routers of the network are small-sized wireless routers, such as the Linksys WRT54GL, available in 2011 for less than 50 Euros. These routers, with 16 MB of RAM and 264 MHz of CPU power, are mounted on the rooftops of the users. When new users want to connect to the network, they acquire a wireless router, install the appropriate firmware and routing protocol, and mount the router on the rooftop. IP addresses for the router are assigned manually from a list of addresses (because of the lack of autoconfiguration standards for mesh networks in the IETF).

While the routers are non-mobile, fluctuations in link quality require an ad hoc routing protocol that allows for quick convergence to reflect the effective topology of the network (such as NHDP [RFC6130] and OLSRv2 [I-D.ietf-manet-olsrv2] developed in the MANET WG). Usually, no human interaction is required for these protocols, as all variable parameters required by the routing protocol are either negotiated in the control traffic exchange, or are only of local importance to each router (i.e. do not influence interoperability). However, external management and monitoring of an ad hoc routing protocol may be desirable to optimize parameters of the routing protocol. Such an optimization may lead to a more stable perceived topology and to a lower control traffic overhead, and therefore to a higher delivery success ratio of data packets, a lower end-to-end delay, and less unnecessary bandwidth and energy usage.

Different use cases for the management of community networks are possible:

- One single Network Management Station (NMS), e.g. a border gateway providing connectivity to the Internet, requires managing or monitoring routers in the community network, in order to investigate problems (monitoring) or to improve performance by changing parameters (managing). As the topology of the network is dynamic, constant connectivity of each router towards the management station cannot be guaranteed. Current network management protocols, such as SNMP and Netconf, may be used (e.g.,
using interfaces such as the NHDP-MIB [I-D.ietf-manet-nhdp-mib]).

However, when routers in the community network are constrained, existing protocols may require too many resources in terms of memory and CPU; and more importantly, the bandwidth requirements may exceed the available channel capacity in wireless mesh networks. Moreover, management and monitoring may be unfeasible if the connection between the NMS and the routers is frequently interrupted.

- A distributed network monitoring, in which more than one management station monitors or manages other routers. Because connectivity to a server cannot be guaranteed at all times, a distributed approach may provide a higher reliability, at the cost of increased complexity. Currently, no IETF standard exists for distributed monitoring and management.

- Monitoring and management of a whole network or a group of routers. Monitoring the performance of a community network may require more information than what can be acquired from a single router using a network management protocol. Statistics, such as topology changes over time, data throughput along certain routing paths, congestion etc., are of interest for a group of routers (or the routing domain) as a whole. As of 2012, no IETF standard allows for monitoring or managing whole networks, instead of single routers.

3.10. Mobile Applications

M2M services are increasingly provided by mobile service providers as numerous devices, home appliances, utility meters, cars, video surveillance cameras, and health monitors, are connected with mobile broadband technologies. This diverse range of machines brings new network and service requirements and challenges. Different applications e.g. in a home appliance or in-car network use Bluetooth, Wi-Fi or Zigbee and connect to a cellular module acting as a gateway between the constrained environment and the mobile cellular network.

Such a gateway might provide different options for the connectivity of mobile networks and constrained devices, e.g.:

- a smart phone with 3G/4G and WLAN radio might use BT-LE to connect to the devices in a home area network,

- a femtocell might be combined with home gateway functionality acting as a low-power cellular base station connecting smart devices to the application server of a mobile service provider.
an embedded cellular module with LTE radio connecting the devices in the car network with the server running the telematics service,

- an M2M gateway connected to the mobile operator network supporting diverse IoT connectivity technologies including ZigBee and CoAP over 6LoWPAN over IEEE 802.15.4.

Common to all scenarios above is that they are embedded in a service and connected to a network provided by a mobile service provider. Usually there is a hierarchical deployment and management topology in place where different parts of the network are managed by different management entities and the count of devices to manage is high (e.g. many thousands). In general, the network is comprised by manifold type and size of devices matching to different device classes. As such, the managing entity needs to be prepared to manage devices with diverse capabilities using different communication or management protocols. In case the devices are directly connected to a gateway they most likely are managed by a management entity integrated with the gateway, which itself is part of the Network Management System (NMS) run by the mobile operator. Smart phones or embedded modules connected to a gateway might be themselves in charge to manage the devices on their level. The initial and subsequent configuration of such a device is mainly based on self-configuration and is triggered by the device itself.

The challenges in the management of devices in a mobile application are manifold. Firstly, the issues caused through the device mobility need to be taken into consideration. While the cellular devices are moving around or roaming between different regional networks, they should report their status to the corresponding management entities with regard to their proximity and management hierarchy. Secondly, a variety of device troubleshooting information needs to be reported to the management system in order to provide accurate service to the customer. Third but not least, the NMS and the used management protocol need to be tailored to keep the cellular devices lightweight and as energy efficient as possible.

The data models used in these scenario are mostly derived from the models of the operator NMS and might be used to monitor the status of the devices and to exchange the data sent by or read from the devices. The gateway might be in charge of filtering and aggregating the data received from the device as the information sent by the device might be mostly redundant.

3.11. Automated Metering Infrastructure

An AMI network enables an electric utility to retrieve frequent electric usage data from each electric meter installed at a
customer’s home or business. With an AMI network, a utility can also receive immediate notification of power outages when they occur, directly from the electric meters that are experiencing those outages. In addition, if the AMI network is designed to be open and extensible, it could serve as the backbone for communicating with other distribution automation devices besides meters, which could include transformers and reclosers.

In this use case, each meter in the AMI network contains a constrained device. These devices are typically C2 devices. Each meter connects to a constrained mesh network with a low-bandwidth radio. These radios can be 50, 150, or 200 kbps at raw link speed, but actual network throughput may be significantly lower due to forward error correction, multihop delays, MAC delays, lossy links, and protocol overhead.

The constrained devices are used to connect the metering logic with the network, so that usage data and outage notifications can be sent back to the utility’s headend systems over the network. These headend systems are located in a data center managed by the utility, and may include meter data collection systems, meter data management systems, and outage management systems.

The meters are connected to a mesh network, and each meter can act as both a source of traffic and as a router for other meters’ traffic. In a typical AMI application, smaller amounts of traffic (read requests, configuration) flow "downstream" from the headend to the mesh, and larger amounts of traffic flow "upstream" from the mesh to the headend. However, during a firmware update operation, larger amounts of traffic might flow downstream while smaller amounts flow upstream. Other applications that make use of the AMI network may have their own distinct traffic flows.

The mesh network is anchored by a collection of higher-end devices, which contain a mesh radio that connects to the constrained network as well as a backhaul link that connects to a less-constrained network. The backhaul link could be cellular, WiMAX, or Ethernet, depending on the backhaul networking technology that the utility has chosen. These higher-end devices (termed "routers" in this use case) are typically installed on utility poles throughout the service territory. Router devices are typically less constrained than meters, and often contain the full routing table for all the endpoints routing through them.

In this use case, the utility typically installs on the order of 1000 meters per router. The collection of meters that are routing through a specific router is called a "PAN". When powered on, each meter is designed to discover the nearby PANs, select the optimal PAN to join,
and select the optimal meters in that PAN to route through when sending data to the headend. After joining the PAN, the meter is designed to continuously monitor and optimize its connection to the PAN, and it may change routes and PANs as needed. Because of this continuous optimization, PAN membership can change frequently throughout the life of the network.

Each PAN may be configured e.g. to share an encryption key, providing confidentiality for all data traffic within the PAN. This key may be obtained by a meter only after an end-to-end authentication process based on certificates, ensuring that only authorized and authenticated meters are allowed to join the PAN, and by extension, the mesh network as a whole.

After joining the PAN, each endpoint obtains a routable and possibly private IPv6 address that enables end-to-end communication between the headend systems and each meter. In this use case, the meters are always-on. However, due to lossy links and network optimization, not every meter will be immediately accessible, though eventually every meter will be able to exchange data with the headend.

In a large AMI deployment, there may be 10 million meters supported by 10,000 routers, spread across a very large geographic area. Within a single PAN, the meters may range between 1 and approx. 20 hops from the router. During the deployment process, these meters are installed and turned on in large batches, and those meters must be authenticated, given addresses, and provisioned with any configuration information necessary for their operation. During deployment and after deployment is finished, the network must be monitored continuously and failures must be handled. Configuration parameters may need to be changed on large numbers of devices, but most of the devices will be running the same configuration. Moreover, eventually, the firmware in those meters will need to be upgraded, and this must also be done in large batches because most of the devices will be running the same firmware image.

Because there may be thousands of routers, this operational model (batch deployment, automatic provisioning, continuous monitoring, batch reconfiguration, batch firmware update) should also apply to the routers as well as the constrained devices. The scale is different (thousands instead of millions) but still large enough to make individual management impractical for routers as well.

3.12. MANET Concept of Operations (CONOPS) in Military

The use case on the Concept of Operations (CONOPS) focuses on the configuration and monitoring of networks that are currently being used in military and as such, it offers insights and challenges of
network management that military agencies are facing.

As technology advances, military networks nowadays become large and consist of varieties of different types of equipments that run different protocols and tools that obviously increase complexity of the tactical networks. Moreover, lacks of open common interfaces and Application Programming Interface (API) are often a challenge to network management. Configurations are, most likely, manually performed. Some devices do not support IP networks. Integration and evaluation process are no longer trivial for a large set of protocols and tools. In addition, majority of protocols and tools developed by vendors that are being used are proprietary which makes integration more difficult. The main reason that leads to this problem is that there is no clearly defined standard for the MANET Concept of Operations (CONOPS). In the following, a set of scenarios of network operations are described, which might lead to the development of network management protocols and a framework that can potentially be used in military networks.

Note: The term "node" is used at IETF for either a host or router. The term "unit" or "mobile unit" in military (e.g. Humvees, tanks) is a unit that contains multiple routers, hosts, and/or other non-IP-based communication devices.

Scenario: Parking Lot Staging Area:

The Parking Lot Staging Area is the most common network operation that is currently widely used in military prior to deployment. MANET routers, which can be identical such as the platoon leader’s or rifleman’s radio, are shipped to a remote location along with a Fixed Network Operations Center (NOC), where they are all connected over traditional wired or wireless networks. The Fixed NOC then performs mass-configuration and evaluation of configuration processes. The same concept can be applied to mobile units. Once all units are successfully configured, they are ready to be deployed.
Scenario: Monitoring with SatCom Reachback:

The Monitoring with SatCom Reachback, which is considered another possible common scenario to military’s network operations, is similar to the Parking Lot Staging Area. Instead, the Fixed NOC and MANET routers are connected through a Satellite Communications (SatCom) network. The Monitoring with SatCom Reachback is a scenario where MANET routers are augmented with SatCom Reachback capabilities while On-The-Move (OTM). Vehicles carrying MANET routers support multiple types of wireless interfaces, including High Capacity Short Range Radio interfaces as well as Low Capacity OTM SatCom interfaces. The radio interfaces are the preferred interfaces for carrying data traffic due to their high capacity, but the range is limiting with respect to connectivity to a Fixed NOC. Hence, OTM SatCom interfaces offer a more persistent but lower capacity reachback capability. The existence of a SatCom persistent Reachback capability offers the NOC the ability to monitor and manage the MANET routers over the air. Similarly to the Parking Lot Staging scenario, the same concept can be applied to mobile units.
Figure 2: Monitoring with one-hop SatCom Reachback network

Scenario: Hierarchical Management:

Another reasonable scenario common to military operations in a MANET environment is the Hierarchical Management scenario. Vehicles carry a rather complex set of networking devices, including routers running MANET control protocols. In this hierarchical architecture, the MANET mobile unit has a rather complex internal architecture where a local manager within the unit is responsible for local management. The local management includes management of the MANET router and control protocols, the firewall, servers, proxies, hosts and applications. In addition, a standard management interface is required in this architecture. Moreover, in addition to requiring standard management interfaces into the components comprising the MANET nodal architecture, the local manager is responsible for local monitoring and the generation of periodic reports back to the Fixed NOC.
Scenario: Management over Lossy/Intermittent Links:

In the future of military operations, the standard management will be done over lossy and intermittent links and ideally the Fixed NOC will become mobile. In this architecture, the nature and current quality
of each link are distinct. However, there are a number of issues that would arise and need to be addressed:

1. Common and specific configurations are undefined:
 A. When mass-configuring devices, common set of configurations are undefined at this time.
 B. Similarly, when performing a specific device, set of specific configurations is unknown.

2. Once the total number of units becomes quite large, scalability would be an issue and need to be addressed.

3. The state of the devices are different and may be in various states of operations, e.g., ON/OFF, etc.

4. Pushing large data files over reliable transport, e.g., TCP, would be problematic. Would a new mechanism of transmitting large configurations over the air in low bandwidth be implemented? Which protocol would be used at transport layer?

5. How to validate network configuration (and local configuration) is complex, even when to cutover is an interesting question.

6. Security as a general issue needs to be addressed as it could be problematic in military operations.

```
+---------+             +----------+
|  Mobile |<----------->| router_1 |
|   NOC   |?--+         +----------+
+---------+    |
       |        +----------+
       ^        |        +------->| router_2 |
       |                  +----------+
       |                  0
       |                  0
       |                  0
+------------------>| router_N |
+----------+
```

Figure 4: Management over Lossy/intermittent Links
4. Requirements on the Management of Networks with Constrained Devices

This section describes the requirements categorized by management areas listed in subsections. The requirements in this section are subject for discussion on the Coman maillist.

Note that the requirements in this section need to be seen as standalone requirements. A device might be able to provide selected requirements but might not be capable to provide all requirements at once. On the other hand a device vendor might select a subset of the requirements to implement. As of today this document does not recommend the realization of a profile of requirements.

Following template is used for the definition of the requirements.

Req-ID: An ID uniquely identified by a three-digit number
Title: The title of the requirement.
Description: The rational and description of the requirement.
Source: The origin of the requirement and the matching use case or application.

Requirement Type: Functional Requirement, Non-Functional Requirement, Design Constraint

Device type: The device types by which this requirement can be supported: C0, C1 and/or C2.

Priority: The priority of the requirement showing the importance: Mandatory (M), Optional (O), Conditional (C).

4.1. Management Architecture/System

Req-ID: 4.1.001
Title: Support multiple device classes within a single network.
Description: Larger networks usually are made up of devices belonging to different device classes (e.g., constrained mesh endpoints and less constrained routers) that work together. Hence, the management architecture must be applicable to networks that have a mix of different device classes.
Source: All use cases.

Requirement Type: Non-Functional Requirement

Device type: Managing and intermediary entities.

Priority: Mandatory

Req-ID: 4.1.002

Title: Management scalability.

Description: The management architecture must be able to scale with the number of devices involved and operate efficiently in any network size and topology. This implies that e.g. the managing entity is able to handle huge amount of device monitoring data and the management protocol is not sensitive to the decrease of the time between two client requests. To achieve good scalability, caching techniques, in-network data aggregation techniques, hierarchical management models may be used.

Source: General requirement for all use cases to enable large scale networks.

Requirement Type: Design Constraint

Device type: C0, C1, and C2

Priority: Mandatory

Req-ID: 4.1.003

Title: Hierarchical management

Description: Provide a means of hierarchical management, i.e. provide intermediary management entities on different levels, which can take over the responsibility for the management of a sub-hierarchy of the network of constraint devices. The intermediary management entity can e.g. support management data aggregation to handle e.g. high-frequent monitoring data or provide a caching mechanism for the uplink and downlink communication. Hierarchical management contributes to management scalability.
Source: Use cases where a huge amount of devices are deployed with a hierarchical topology.

Requirement Type: Non-Functional Requirement

Device type: Managing and intermediary entities.

Priority: Optional

Req-ID: 4.1.004

Title: Minimize state maintained on constrained devices.

Description: The amount of state that needs to be maintained on constrained devices should be minimized. This is important in order to save memory (especially relevant for C0 and C1 devices) and in order to allow devices to restart for example to apply configuration changes or to recover from extended periods of inactivity. One way to achieve this is to adopt a RESTful architecture that minimizes the amount of state maintained by managed constrained devices and that makes resources of a device addressable via URIs.

Source: Basic requirement which concerns all use cases.

Requirement Type: Non-Functional Requirement

Device type: C0, C1, and C2

Priority: Mandatory

Req-ID: 4.1.005

Title: Support devices that are not always online.

Description: Constrained devices often duty cycle their radio or the whole device in order to save energy. The management system must not assume that constrained devices are always reachable. Intermediaries may be used that provide information for devices currently inactive or that take responsibility to re-synchronize devices when they become reachable again after an extended offline period.
Source: All use cases where a device e.g. needs to be set to sleep mode.

Requirement Type: Design Constraint

Device type: Managing and intermediary entities.

Priority: Mandatory

Req-ID: 4.1.006

Title: Automatic re-synchronization with eventual consistency.

Description: To support large scale networks, where some constrained devices may be offline at any point in time, it is necessary to distribute configuration parameters in a way that allows temporary inconsistencies but eventually converges, after a sufficiently long period of time without further changes, towards global consistency.

Source: Use cases with large scale networks with many devices.

Requirement Type: Functional Requirement

Device type: C0, C1, and C2

Priority: Mandatory

Req-ID: 4.1.007

Title: Support for lossy and unreliable links.

Description: Some constrained devices will only be able to support lossy and unreliable links characterized by a limited data rate, a high latency, and a high transmission error rate. The management protocol(s) must act gracefully with such issues and provide a high degree of resilience.

Source: Basic requirement for constrained networks with unreliable links and constrained devices with an unreliable radio.
Requirement Type: Design Constraint

Device type: C0, C1, and C2

Priority: Mandatory

Req-ID: 4.1.008

Title: Network-wide configuration

Description: Provide means by which the behavior of the network can be specified at a level of abstraction (network-wide configuration) higher than a set of configuration information specific to individual devices. It is useful to derive the device specific configuration from the network-wide configuration. The identification of the relevant subset of the policies to be provisioned is according to the capabilities of each device and can be obtained from a pre-configured data-repository. Such a repository can be used to configure pre-defined device or protocol parameters for the whole network. Furthermore, such a network-wide view can be used to monitor and manage a group of routers or a whole network. E.g. monitoring the performance of a network requires additional information other than what can be acquired from a single router using a management protocol.

Source: In general all use cases, which want to configure the network and its devices based on a network view in a top-down manner.

Requirement Type: Non-Functional Requirement

Device type: C0, C1, and C2

Priority: Optional

Req-ID: 4.1.009

Title: Distributed Management

Description: Provide a means of simple distributed management, where a constrained network can be managed or monitored by more than one manager. Since the connectivity to a server cannot be guaranteed at all times, a distributed approach may provide a higher reliability, at the cost of increased complexity. This
requirement implies the handling of data consistency in case of concurrent read and write access to the device datastore.

Source: Use cases where the count of devices to manage is high.

Requirement Type: Non-Functional Requirement

Device type: C1 and C2

Priority: Optional

4.2. Management protocols and data model

Req-ID: 4.2.001

Title: Enabling modular implementations of management protocols with a basic set of protocol primitives.

Description: Management protocols should allow modular implementations, i.e., it should be possible to implement only a basic set of protocol primitives on highly constrained devices while devices with additional resources may provide more support for additional protocol primitives. It should be possible to discover the management protocol primitives by a device.

Source: Basic requirement interesting for all use cases.

Requirement Type: Non-Functional Requirement

Device type: C0, C1, and C2

Priority: Mandatory

Req-ID: 4.2.002

Title: Compact encoding of management data

Description: The encoding of management data should be compact and space efficient, enabling small message sizes.

Source: General requirement to save memory for the receiver buffer and on-air bandwidth.
Requirement Type: Functional Requirement
Device type: C0, C1, and C2
Priority: Mandatory

Req-ID: 4.2.003

Title: Compression of management data or complete messages

Description: Management data exchanges can be further optimized by applying data compression techniques or delta encoding techniques. Compression typically requires additional code size and some additional buffers and/or the maintenance of some additional state information. For C0 devices compression may not be feasible. As such, this requirement is marked as optional.

Source: Use cases where it is beneficial to reduce transmission time and bandwidth, e.g. mobile applications which require to save on-air bandwidth.

Requirement Type: Functional Requirement
Device type: C1 and C2
Priority: Optional

Req-ID: 4.2.004

Title: Mapping of management protocol interactions.

Description: It is desirable to have a loss-less automated mapping between the management protocol used to manage constrained devices and the management protocols used to manage regular devices. In the ideal case, the same core management protocol can be used with certain restrictions taking into account the resource limitations of constrained devices. However, for very resource constrained devices, this goal might not be achievable. Hence this requirement is marked optional for device class C2.

Source: Use cases where high-frequent interaction with the management system of a non-constrained network is required.
Requirement Type: Functional Requirement

Device type: C2

Priority: Optional

Req-ID: 4.2.005

Title: Consistency of data models with the underlying information model.

Description: The data models used by the management protocol must be consistent with the information model used to define data models for non-constrained networks. This is essential to facilitate the integration of the management of constrained networks with the management of non-constrained networks. Using an underlying information model for future data model design enables furthermore top-down model design and model reuse as well as data interoperability (i.e. exchange of management information between the constrained and non-constrained networks). This is a strong requirement, even despite the fact that the underlying information models are often not explicitly documented in the IETF.

Source: General requirement to support data interoperability, consistency and model reuse.

Requirement Type: Non-Functional Requirement

Device type: C0, C1, and C2

Priority: Mandatory

Req-ID: 4.2.006

Title: Loss-less mapping of management data models.

Description: It is desirable to have a loss-less automated mapping between the management data models used to manage regular devices and the management data models used for managing constrained devices. In the ideal case, the same core data models can be used with certain restrictions taking into account the resource limitations of constrained devices. However, for very resource constrained devices, this goal might not be achievable. Hence this requirement is marked optional for device class C2.
Source: Use cases where consistent data exchange with the management system of a non-constrained network is required.

Requirement Type: Functional Requirement

Device type: C2

Priority: Optional

Req-ID: 4.2.007

Title: Protocol extensibility

Description: Provide means of extensibility for the management protocol, i.e. the mechanisms that can deal with the changing requirements on the supported message and data types effectively without causing inter-operability problems or having to replace/update large amounts of deployed devices.

Source: Basic requirement useful for all use cases.

Requirement Type: Functional Requirement

Device type: C0, C1, and C2

Priority: Mandatory

4.3. Configuration management

Req-ID: 4.3.001

Title: Self-configuration capability

Description: Automatic configuration and re-configuration of devices without manual intervention. Compared to the traditional management of devices where the management application is the central entity configuring the devices, in the auto-configuration scenario the device is the active part and initiates the configuration process. Self-configuration can be initiated during the initial configuration or for subsequent configurations, where the configuration data needs to be refreshed. Self-configuration should be also supported during the initialization phase or in the event of failures, where prior knowledge of the network topology is not available or the topology of the network is uncertain.
Source: In general all use cases requiring easy deployment and plug&
play behavior as well as easy maintenance of many constrained
deVICES.

Requirement Type: Functional Requirement
Device type: C0, C1, and C2
Priority: Mandatory for C0 and C1, Optional for C2.

Req-ID: 4.3.002
Title: Enable Peer Configuration
Description: The device can obtain its configuration from peer
devices, in case a management (configuration) server is not
accessible, or the device cannot be accessed by management
applications.

Source: Use cases where accessibility by a centralized management
station or access to managing entities is not granted by the
architecture of the solution or deployment strategy.

Requirement Type: Functional Requirement
Device type: C0, C1, and C2
Priority: Conditional

Req-ID: 4.3.003
Title: Capability Discovery
Description: Enable the discovery of supported optional management
capabilities of a device and their exposure via at least one
protocol and/or data model.

Source: Use cases where the device interaction with other devices or
applications is a function of the level of support for its
capabilities.
Requirement Type: Functional Requirement

Device type: C1 and C2

Priority: Optional

Req-ID: 4.3.004

Title: Asynchronous Transaction Support

Description: Provide configuration management with asynchronous transaction support. Configuration operations must support a transactional model, with asynchronous indications that the transaction was completed.

Source: Use cases, which require transaction-oriented processing because of reliability or distributed architecture functional requirements.

Requirement Type: Functional Requirement

Device type: C1 and C2

Priority: Conditional

Req-ID: 4.3.005

Title: Network reconfiguration

Description: Provide a means of network reconfiguration in order to recover the network functionality from node and communication faults.

Source: Practically all use cases, as network connectivity is a basic requirement.

Requirement Type: Functional Requirement

Device type: C0, C1, and C2

Priority: Mandatory

Req-ID: 4.3.006
Title: Automatic reconfiguration of hierarchical networks
Description: Provide the iterative and automatic reconfiguration of
the whole hierarchical network of constrained devices to allow the
network to recover from faults and failures. The requirement
includes the recovery of the hierarchical structure (topology).
Source: All use cases that involve a hierarchical topology (the
exception may be Community Networks or other environments that
involve flat and mesh topologies).
Requirement Type: Functional Requirement
Device type: C0, C1, and C2
Priority: Conditional (conditioned by the hierarchical structure of
the network)

4.4. Monitoring functionality

Req-ID: 4.4.001
Title: Device status monitoring
Description: Provide a monitoring function to collect and expose
information about device status and exposing it via at least one
management interface. The device monitoring might make use of the
hierarchical management through the intermediary entities and the
data caching mechanism.
Source: All use cases
Requirement Type: Functional Requirement
Device type: C0, C1, and C2
Priority: Mandatory

Req-ID: 4.4.002
Title: Energy status monitoring
Description: Provide a monitoring function to collect and expose information about device energy parameters and usage (e.g. battery level and communication power).

Source: Use case Energy Management

Requirement Type: Functional Requirement

Device type: C0, C1, and C2

Priority: Mandatory for energy reporting devices, Optional for the rest

Req-ID: 4.4.003

Title: Monitoring of current and estimated device availability

Description: Provide a monitoring function to collect and expose information about current device availability (energy, memory, computing power, forwarding plane utilization, queue buffers, etc.) and estimation of remaining available resources.

Source: All use cases. Note that monitoring energy resources (like battery status) may be required on all kinds of devices.

Requirement Type: Functional Requirement

Device type: C0, C1, and C2

Priority: Optional

Req-ID: 4.4.004

Title: Network status monitoring

Description: Provide a monitoring function to collect and expose information related to the status of a network or network segments connected to the interfaces of the device.

Source: All use cases.
Requirement Type: Functional Requirement

Device type: C1 and C2

Priority: Optional

Req-ID: 4.4.005

Title: Network topology discovery

Description: Provide a network topology discovery capability (e.g. use of topology extraction algorithms to retrieve the network state) and a monitoring function to collect and expose information about the network topology.

Source: Use cases Community Network Applications and Mobile Applications

Requirement Type: Functional Requirement

Device type: C1 and C2

Priority: Optional

Req-ID: 4.4.006

Title: Self-monitoring

Description: Provide self-monitoring (local fault detection) feature for fast fault detection and recovery.

Source: Use cases where the devices cannot be monitored centrally in appropriate manner and self-healing is required.

Requirement Type: Functional Requirement

Device type: C1 and C2

Priority: Mandatory for C2, Optional for C1

Req-ID: 4.4.007

Title: Neighbor-monitoring

Description: Provide a means of neighbor-monitoring (fault detection in local network) for fast fault detection and recovery to support e.g. the scenario that only a neighbor is able to detect whether a device is not accessible.

Source: Use cases where the devices cannot be monitored centrally.

Requirement Type: Functional Requirement

Device type: C1 and C2

Priority: Optional

Req-ID: 4.4.008

Title: Recovery

Description: Provide local, central and hierarchical recovery mechanisms (recovery is in some cases achieved by recovering the whole network of constrained devices).

Source: Use cases Industrial applications, Home and Building Automation, Mobile Applications that involve different forms of clustering or area managers.

Requirement Type: Functional Requirement

Device type: C2

Priority: Optional

Req-ID: 4.4.009

Title: Notifications

Description: The device will provide the capability of sending notifications on critical events and faults.
Source: All use cases.
Requirement Type: Functional Requirement
Device type: C0, C1, and C2
Priority: Mandatory for C2, Optional for C1

Req-ID: 4.4.010
Title: Logging
Description: The device will provide the capability of building, keeping, and allowing retrieval of logs of events (including but not limited to critical faults and alarms).
Source: Use cases Industrial Applications, Building Automation, Infrastructure monitoring
Requirement Type: Functional Requirement
Device type: C2
Priority: Mandatory for some medical or industrial applications, Optional otherwise

Req-ID: 4.4.011
Title: Performance Monitoring
Description: The device will provide a monitoring function to collect and expose information about the basic TBD performance of the device. The performance management functionality might make use of the hierarchical management through the intermediary devices.
Source: Use cases Building automation, and Transport applications
Requirement Type: Functional Requirement
Device type: C1 and C2
Req-ID: 4.4.012
Title: Fault detection monitoring
Description: The device will provide fault detection monitoring. The system collects information about network states in order to identify whether faults have occurred. In some cases the detection of the faults might be based on the processing and analysis of the parameters retrieved from the network or other devices. In case of C0 devices the monitoring might be limited to the check whether the device is alive or not.
Source: Use cases Environmental Monitoring, Building Automation, Energy Management, Infrastructure Monitoring
Requirement Type: Functional Requirement
Device type: C0, C1 and C2
Priority: Optional

Req-ID: 4.4.013
Title: Passive Monitoring
Description: The device will provide passive monitoring capabilities. The system collects information about device components and network states. It may perform postmortem analysis of data.
Source: Use cases Environmental Monitoring, Medical Applications, Infrastructure Monitoring
Requirement Type: Functional Requirement
Device type: C2
Priority: Optional
Req-ID: 4.4.014

Title: Reactive Monitoring

Description: The system will provide reactive monitoring capabilities. The system collects information about network states to detect whether events of interest have occurred and then adaptively react, e.g. reconfigure the network. Typically actions (re-actions) will be executed or sent as commands by the management applications.

Source: Medical and Industrial Applications, Home and Building Automation

Requirement Type: Functional Requirement

Device type: C2

Priority: Optional

4.5. Self-management

Req-ID: 4.5.001

Title: Event-driven self-management - Self-healing

Description: Enable event-driven self-management functionality in a device, i.e. the device should be able to react in case of failure e.g. by initiating a fully or partly reset and initiate a self-configuration as necessary. It is a matter of device design and subject for discussion how much self-management a class 1 device can support. A minimal failure detection and self-management logic is assumed to be generally useful for the self-healing of a device.

Source: The requirement generally relates to all use cases in this document.

Requirement Type: Functional Requirement

Device type: C1 and C2

Priority: Optional
Req-ID: 4.5.002

Title: Periodic self-management.

Description: Enable periodic self-management functionality, i.e. a device should be able to check for failures cyclically or schedule-controlled to trigger self-management as necessary. It is a matter of device design and subject for discussion how much self-management a C1 device can support. A minimal logic for failure detection and self-management is assumed to be generally useful for the self-healing of a device in general.

Source: The requirement generally relates to all use cases in this document.

Requirement Type: Functional Requirement

Device type: C1 and C2

Priority: Optional

4.6. Security and Access Control

Req-ID: 4.6.001

Title: Authentication of management systems.

Description: Systems having a management role must be properly authenticated to the device such that the device can exercise proper access control and in particular distinguish rightful management systems from rogue systems.

Source: Basic security requirement for all use cases.

Requirement Type: Functional Requirement

Device type: C0, C1, and C2

Priority: Mandatory

Req-ID: 4.6.002

Title: Authentication of managed devices.
Description: Managed devices must authenticate themselves to systems having a management role such that management systems can protect themselves from rogue devices.

Source: Basic security requirement for all use cases.

Requirement Type: Functional Requirement

Device type: C0, C1, and C2

Priority: Mandatory

Req-ID: 4.6.003

Title: Access control on managed constrained devices.

Description: Managed constrained devices must provide an access control mechanism that allows the security administrator to restrict how systems in a management role can access the device (e.g., no-access, read-only access, and read-write access).

Source: Basic security requirement for use cases where access control is essential.

Requirement Type: Functional Requirement

Device type: C0, C1, and C2

Priority: Mandatory

Req-ID: 4.6.004

Title: Access control on management systems.

Description: Systems acting in a management role must provide an access control mechanism that allows the security administrator to restrict which devices can access the managing system (e.g., using an access control white list of known devices).

Source: Basic security requirement for use cases where access control is essential.
Requirement Type: Functional Requirement
Device type: C0, C1, and C2
Priority: Mandatory

Req-ID: 4.6.005
Title: Support suitable security bootstrapping mechanisms.
Description: Mechanisms should be supported that simplify the bootstrapping of devices in order to add them to access control lists.
Source: Basic security requirement for all use cases.

Requirement Type: Functional Requirement
Device type: C0, C1, and C2
Priority: Mandatory

Req-ID: 4.6.006
Title: Enable the authentication of a large number of devices at system start.
Description: In certain application scenarios, it is possible that a large number of devices (re)start at about the same time. Protocols and authentication systems should be designed such that a large number of devices (re)starting simultaneously does not negatively impact the device authentication process.
Source: Use cases where large number of devices need to be started at once.

Requirement Type: Functional Requirement
Device type: C0, C1, and C2
Priority: Optional

Req-ID: 4.6.007

Title: Select cryptographic algorithms that are efficient in both code space and execution time.

Description: Cryptographic algorithms have a major impact in terms of both code size and overall execution time. It is therefore necessary to select mandatory to implement cryptographic algorithms (like some elliptic curve algorithm) that are reasonable to implement with the available code space and that have a small impact at runtime.

Source: Generic requirement to reduce the footprint and CPU usage of a constrained device.

Requirement Type: Non-Functional Requirement

Device type: C0, C1, and C2

Priority: Mandatory

Req-ID: 4.6.008

Title: Select cryptographic algorithms that are to be supported in hardware.

Description: Some wireless technologies (e.g., IEEE 802.15.4) require the support of certain cryptographic algorithms. Wireless chipsets often implement these algorithms in hardware on the transceiver. Certain chipsets expose an interface allowing the application logic to call the cryptographic algorithms implemented in hardware on the transceiver, leading to hardware support for higher layer security functions. As such, when selecting cryptographic protocols, it is useful to choose algorithms that are likely to be supported by certain wireless technologies.

Source: Generic requirement to enable fast execution of cryptographic algorithms as well as to reduce the footprint of a constrained device.

Requirement Type: Non-Functional Requirement

Device type: C0, C1, and C2
4.7. Energy Management

Req-ID: 4.7.001

Title: Management of Energy Resources

Description: Enable managing power resources in the network, e.g. reduce the sampling rate of nodes with critical battery and reduce node transmission power, put nodes to sleep, put single interfaces to sleep, reject a management job based on available energy, criteria e.g. importance levels pre-defined by the management application, etc. (e.g. a task marked as essential can be executed even if the energy level is low).

Source: Use case Energy Management

Requirement Type: Functional Requirement

Device type: C0, C1, and C2

Priority: Mandatory for the use case Energy Management, Optional otherwise.

Req-ID: 4.7.002

Title: Support for layer 2 energy-aware protocols

Description: The device will support layer 2 energy management protocols (e.g. energy-efficient Ethernet IEEE 802.3az) and be able to report on these.

Source: Use case Energy Management

Requirement Type: Functional Requirement

Device type: C0, C1, and C2

Priority: Optional

Req-ID: 4.7.003
Title: Data models for energy management
Description: The device will implement standard data models for energy management and expose it through a management protocol interface, e.g., EMAN MIB modules and extensions. It would be necessary to downscale EMAN MIBs for the use in C1 and C2 devices.
Source: Use case Energy Management
Requirement Type: Functional Requirement
Device type: C1 and C2
Priority: Optional

Req-ID: 4.7.004
Title: Dying gasp
Description: When energy resources draw below the red line level, the device will send a dying gasp notification and perform if still possible a graceful shutdown including conservation of critical device configuration and status information.
Source: Use case Energy Management
Requirement Type: Functional Requirement
Device type: C0, C1, and C2
Priority: Optional

Req-ID: 4.7.005
Title: Support of energy-optimized communication protocols
Description: Use of an optimized communication protocol to minimize energy usage for the device (radio) receiver/transmitter, on-air bandwidth (protocol efficiency), reduced amount of data communication between nodes (implies data aggregation and filtering but also a compact format for the transferred data).
4.8. SW Distribution

Req-ID: 4.8.001

Title: Software distribution

Description: Support group-based firmware update of large set of constrained devices, with eventual consistency and coordinated reload times.

Source: All use cases.

Requirement Type: Functional Requirement

Device type: C0, C1, and C2

Priority: Mandatory for basic operation, Optional for consistency checks, scheduling, and coordination

Req-ID: 4.8.002

Title: Group-based provisioning

Description: The device will accept configuration management and firmware update commands based upon bulk commands which aim similar configurations of all devices of the same type in a given group of devices. Activation of configuration may be based on pre-loaded sets of default values.

Source: Use cases Community Network Applications and Mobile Applications

Requirement Type: Functional Requirement

Device type: C0, C1, and C2
Priority: Optional

4.9. Traffic management

Req-ID: 4.9.001

Title: Congestion avoidance

Description: Provide the ability to avoid congestion by modifying the device’s reporting rate for periodical data (which is usually redundant) based on the importance and reliability level of the management data. This functionality is usually controlled by the managing entity, where the managing entity marks the data as important or relevant for reliability. However reducing a device’s reporting rate can also be initiated by a device if it is able to detect congestion or has insufficient buffer memory.

Source: Use cases with high reporting rate and traffic e.g. AMI or M2M.

Requirement Type: Design Constraint

Device type: C1 and C2

Priority: Optional

Req-ID: 4.9.002

Title: Redirect traffic

Description: Provide the ability for network nodes to redirect traffic from overloaded intermediary nodes in a network to another path in order to prevent congestion on a central server and in the primary network.

Source: Use cases with high reporting rate and traffic e.g. AMI or M2M.

Requirement Type: Design Constraint

Device type: Intermediary entity in the network.

Priority: Optional

Req-ID: 4.9.003

Title: Traffic delay schemes.

Description: Provide the ability to apply delay schemes to incoming and outgoing links on an overloaded intermediary node as necessary in order to reduce the amount of traffic in the network.

Source: Use cases with high reporting rate and traffic e.g. AMI or M2M.

Requirement Type: Design Constraint

Device type: Intermediary entity in the network.

Priority: Optional

4.10. Transport Layer

Req-ID: 4.10.001

Title: Scalable transport layer

Description: Enable the use of a scalable transport layer, i.e. not sensitive to the decrease of the time between two client requests, which is useful for applications requiring frequent access to device data.

Source: Applications with high frequent access to the device data.

Requirement Type: Design Constraint

Device type: C0, C1 and C2

Priority: Conditional, in case such scalability is a prerequisite.

Req-ID: 4.10.002

Title: Reliable unicast transport.

Description: Provide reliable unicast transport of messages.

Source: Generally all applications benefit from the reliability of the message transport.
Requirement Type: Functional Requirement

Device type: C0, C1, and C2

Priority: Mandatory

Req-ID: 4.10.003

Title: Best-effort multicast

Description: Provide best-effort multicast of messages, which is generally useful when devices need to discover a service provided by a server or many devices need to be configured by a managing entity at once based on the same data model.

Source: Use cases where a device needs to discover services as well as use cases with high amount of devices to manage, which are hierarchically deployed, e.g. AMI or M2M.

Requirement Type: Functional Requirement

Device type: C0, C1, and C2

Priority: Optional

Req-ID: 4.10.004

Title: Secure message transport.

Description: Enable secure message transport providing authentication, data integrity, confidentiality by using existing transport layer technologies with small footprint such as TLS/DTLS.

Source: All use cases.

Requirement Type: Non-Functional Requirements

Device type: C1 and C2

Priority: Mandatory
4.11. Implementation Requirements

Req-ID: 4.11.001

Title: Avoid complex application layer transactions requiring large application layer messages.

Description: Complex application layer transactions tend to require large memory buffers that are typically not available on C0 or C1 devices and only by limiting functionality on C2 devices. Furthermore, the failure of a single large transaction requires repeating the whole transaction. On constrained devices, it is often more desirable to a large transaction down into a sequence of smaller transactions, which require less resources and allow to make progress using a sequence of smaller steps.

Source: Basic requirement which concerns all use cases with memory constrained devices.

Requirement Type: Design Constraint

Device type: C0, C1, and C2

Priority: Mandatory

Req-ID: 4.11.002

Title: Avoid reassembly of messages at multiple layers in the protocol stack.

Description: Reassembly of messages at multiple layers in the protocol stack requires buffers at multiple layers, which leads to inefficient use of memory resources. This can be avoided by making sure the application layer, the security layer, the transport layer, the IPv6 layer and any adaptation layers are aware of the limitations of each other such that unnecessary fragmentation and reassembly can be avoided. In addition, message size constraints must be announced to protocol peers such that they can adapt and avoid sending messages that can’t be processed due to resource constraints on the receiving device.

Source: Basic requirement which concerns all use cases with memory constrained devices.

Requirement Type: Design Constraint
Device type: C0, C1, and C2
Priority: Mandatory
5. Gaps in Network Management Standards

Highlight here the gaps in network management standards.
6. IANA Considerations

This document does not introduce any new code-points or namespaces for registration with IANA.

Note to RFC Editor: this section may be removed on publication as an RFC.
7. Security Considerations

This document discusses the use cases and requirements on the network of constrained devices. If specific requirements for security will be identified, they will be described in future versions of this document.
8. Contributors

Following persons made significant contributions to and reviewed this document:

- Ulrich Herberg (Fujitsu Laboratories of America) contributed the Section 3.9 on Community Network Applications.
- Peter van der Stok contributed to Section 3.5 on Building Automation.
- Zhen Cao contributed to Section 3.10 on Mobile Applications.
- Gilman Tolle contributed the Section 3.11 on Automated Metering Infrastructure.
- James Nguyen and Ulrich Herberg contributed the Section 3.12 on MANET Concept of Operations (CONOPS) in Military.
9. Acknowledgments

The editors would like to thank participants on the maillist for their valuable contributions and comments.
10. References

10.1. Normative References

10.2. Informative References

Appendix A. Related Development in other Bodies

Note that over time the summary on the related work in other bodies might become outdated.

A.1. ETSI TC M2M

ETSI Technical Committee Machine-to-Machine (ETSI TC M2M) aims to provide an end-to-end view of M2M standardization, which enables the integration of multiple vertical M2M applications. The main goal is to overcome the current M2M market fragmentation and to reuse existing mechanisms from telecom standards such as from OMA or 3GPP.

ETSI Release 1 is functionally frozen. The main focus is on use cases for Smart Metering (Technical Report (TR) 102 691) but it also includes eHealth use cases (TR 102 732) and some others. The Service requirements (Technical Standard (TS) 102 689) derived from the use cases, and the functional architecture specification (TS 102 690), will together define the M2M platform. The architecture consists of Service Capabilities (SC), which are basic functional building blocks for building the M2M platform.

Smart Metering is seen as the important showcase for M2M. It is believed that the Service Enablers that were defined based on the work done for Smart Metering and eHealth segments will also allow the building of other services like vending machines, alarm systems etc.

The functional architecture includes following management-related definitions:

- Network Management Functions: consists of all functions required to manage the Access, Transport and Core networks: these include Provisioning, Supervision, Fault Management, etc.

- M2M Management Functions: consists of functions required to manage generic functionalities of M2M Applications and M2M Service Capabilities in the Network and Applications Domain. The management of the M2M Devices and Gateways may use specific M2M Service Capabilities.

The Release 2 work of ETSI TC M2M has started beginning of 2012. Following is a list of networking- and management-related topics under work:

- Interworking with 3GPP networks. This is a new work item, and no discussion has been held on technical details. The intent is to define which ETSI TC M2M functions are applicable when 3GPP NW is used as transport. It is possible that this work would also cover
details on how to use 3GPP interfaces, e.g. those defined in the SIMTC work, but also for charging and policy control.

- Creating a Semantic Model or Data Abstraction layer for vertical industries and interworking. This would provide some high level information description that would be usable for interworking with local networks (e.g. ZigBee), and also for verticals, and it would allow the ETSI Service Enablement layer to also understand the data, instead of being just a bit storage and bit pipe. All technical details are still under discussion, but it has been agreed that a function for this exists in the architecture at least for interworking.

A.2. OASIS

Developments in OASIS related to management of constrained networks are following:

- The Energy Interoperation TC works to define interaction between Smart Grids and their end nodes, including Smart Buildings, Enterprises, Industry, Homes, and Vehicles. The TC develops data and communication models that enable the interoperable and standard exchange of signals for dynamic pricing, reliability, and emergencies. The TC’s agenda also extends to the communication of market participation data (such as bids), load predictability, and generation information. The first version of the Energy Interoperation specification is in final review.

- OASIS Open Data Protocol (OData) aims to simplify the querying and sharing of data across disparate applications and multiple stakeholders for re-use in the enterprise, Cloud, and mobile devices. As a REST-based protocol, OData builds on HTTP, AtomPub, and JSON using URIs to address and access data feed resources. It enables information to be accessed from a variety of sources including (but not limited to) relational databases, file systems, content management systems, and traditional Web sites.

- Open Building Information Exchange (oBIX) aims to enable the mechanical and electrical control systems in buildings to communicate with enterprise applications, and to provide a platform for developing new classes of applications that integrate control systems with other enterprise functions. Enterprise functions include processes such as Human Resources, Finance, Customer Relationship Management (CRM), and Manufacturing.
A.3. OMA

OMA is currently working on Lightweight M2M Enabler, OMA Device Management (OMA DM) Next Generation, and a white paper on M2M Device Classification.

The Lightweight M2M Enabler covers both M2M device management and service management for constrained devices. In the case of less constrained devices, OMA DM Next Generation Enabler may be more appropriate. OMA DM is structured around Management Objects (MO), each specified for a specific purpose. There is also ongoing work with various other MOs such as the Gateway Management Object (GwMO). A draft for the "Lightweight M2M Requirements" is available.

OMA Lightweight M2M and OMA DM Next Generation are important to M2M device management, provisioning and service managements in both the protocol and management objects. OMA Lightweight M2M work seems to have grown from its original scope of being targeted for very simple devices only, i.e. such that could not handle all those protocols that ETSI M2M requires.

A.4. IPSO Alliance

IPSO Alliance developed a profile for Device Functions supporting devices such as sensors with a limited user interface, where the configuration of even basic parameters is impossible to do manually. This is a challenge especially for consumer devices that are managed by non-professional users. The configuration of a web service application running on a constrained device goes beyond the autoconfiguration of the IP stack and local information (e.g. proxy address). Constrained devices need additionally service provider and user account related configuration, such as an address/locator and the username for a web server.

IPSO discusses the use cases and requirements for user friendly configuration of such information on a constrained device, and specifies how IPSO profile Device Function Set can be used in the process. It furthermore defines a standard format for the basic application configuration information.
Appendix B. Related Research Projects

- The EU project IoT-A (Internet-of-Things Architecture) develops an architectural reference model together with the definition of an initial set of key building blocks. These enable the integration of IoT into the service layer of the Future Internet, and realize a novel resolution infrastructure, as well as a network infrastructure that allows the seamless communication flow between IoT devices and services. The development includes a conceptual model of a smart object as well as a basic Internet of Things reference model defining the interaction and communication between IoT devices and relevant entities. The requirements document includes also network and information management requirements (see http://www.iot-a.eu/).

- The EU project SENSEI specified the document on 'End to End Networking and Management' for Wireless Sensor and Actuator Networks. This report presents several research results carried out in SENSEI’s tasks related to End-to-End Networking and Management. Particular analyses have been addressed related to naming and addressing of resources, management of resources, resource plug and play, resource level mobility and traffic modelling. The detailed analysis on each of these topics is intended to identify possible gaps between their specific mechanisms and the functional requirements in the SENSEI reference architecture (see http://www.sensei-project.eu/).

- The EU project FI-WARE is developing the Things Management GE (generic enabler), which uses a data model derived from the OMA DM NGSI data model. Using the abstraction level of things which include non-technical things like rooms, places and people, Things Management GE aims to discover and look up IoT resources that can provide information about things or actuate on these things. The system aims to manage the dynamic associations between IoT resources and things in order to allow internal components as well as external applications to interact with the system using the thing abstraction as the core concept (see http://www.fi-ware.eu/).

- EU project BUTLER Smart Life discusses different IoT management aspects and collects requirements for smart life use cases (e.g. smart home or smart city) mainly from service management pov. (see http://www.iot-butler.eu/).
Appendix C. Open issues

- The terminology section needs to be further extended.
- Class of networks considering the different type of radio and communication technologies in use, needs a discussion.
- The discussion on the management of the constrainedness needs a discussion.
- The current document provides management requirements categorized by management areas and matches the requirements to the device classes. It needs to be decided, whether a list of management features and matching the level of features to device classes and use cases is necessary.
- Section 4 on the management requirements, as the core section in the document, needs further discussion and consolidation.
- The term AMI PAN needs clarification.
- A section highlighting the gaps in network management standards needs to be written.
- The appendix on the work of other SDOs could be extended. Contributions are welcome.
- The appendix on the work of related research projects could be extended. Contributions are welcome.
Appendix D. Change Log

D.1. 01-02

- Extended the terminology section.
- Added additional text for the use cases concerning deployment type, network topology in use, network size, network capabilities, radio technology, etc.
- Added examples for device classes in a use case.
- Added additional text provided by Cao Zhen (China Mobile) for Mobile Applications and by Peter van der Stok for Building Automation.
- Added the new use cases ‘Advanced Metering Infrastructure’ and ‘MANET Concept of Operations in Military’.
- Added the section ‘Managing the Constrainedness of a Device or Network’ discussing the needs of very constrained devices.
- Added a note that the requirements in Section 4 need to be seen as standalone requirements and the current document does not recommend any profile of requirements.
- Added Section 4 on the detailed requirements on constrained management matched to management tasks like fault, monitoring, configuration management, Security and Access Control, Energy Management, etc.
- Solved nits and added references.
- Added Appendix A on the related development in other bodies.
- Added Appendix B on the work in related research projects.

D.2. 00-01

- splitted the section on ‘Networks of Constrained Devices’ into the sections ‘Network Topology Options’ and ‘Management Topology Options’.
- Added the use case ‘Community Network Applications’ and ‘Mobile Applications’.
- Provided a Contributors section.
Extended the section on ‘Medical Applications’.

Solved nits and added references.
Authors’ Addresses

Mehmet Ersue (editor)
Nokia Siemens Networks
Email: mehmet.ersue@nsn.com

Dan Romascanu (editor)
Avaya
Email: dromasca@avaya.com

Juergen Schoenwaelder (editor)
Jacobs University Bremen
Email: j.schoenwaelder@jacobs-university.de
Entity MIB (Version 4)
draft-ietf-eman-rfc4133bis-03

Abstract

This memo defines a portion of the Management Information Base (MIB) for use with network management protocols in the Internet community. In particular, it describes managed objects used for managing multiple logical and physical entities managed by a single SNMP agent. This document specifies version of the Entity MIB, which obsoletes version 3 [RFC4133].

Status of This Memo

This Internet-Draft is submitted to IETF in full conformance with the provisions of BCP 78 and BCP 79.

Internet-Drafts are working documents of the Internet Engineering Task Force (IETF), its areas, and its working groups. Note that other groups may also distribute working documents as Internet-Drafts.

Internet-Drafts are draft documents valid for a maximum of six months and may be updated, replaced, or obsoleted by other documents at any time. It is inappropriate to use Internet-Drafts as reference material or to cite them other than as "work in progress."

The list of current Internet-Drafts can be accessed at http://www.ietf.org/ietf/1id-abstracts.txt. The list of Internet-Draft Shadow Directories can be accessed at http://www.ietf.org/shadow.html

This Internet-Draft will expire on April, 2013
Copyright Notice

Copyright (c) 2012 IETF Trust and the persons identified as the document authors. All rights reserved.

This document is subject to BCP 78 and the IETF Trust’s Legal Provisions Relating to IETF Documents (http://trustee.ietf.org/license-info) in effect on the date of publication of this document. Please review these documents carefully, as they describe your rights and restrictions with respect to this document. Code Components extracted from this document must include Simplified BSD License text as described in Section 4.e of the Trust Legal Provisions and are provided without warranty as described in the Simplified BSD License.

Conventions used in this document

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and "OPTIONAL" in this document are to be interpreted as described in RFC 2119 [RFC2119].
1. The SNMP Management Framework

For a detailed overview of the documents that describe the current Internet-Standard Management Framework, please refer to section 7 of RFC 3410 [RFC3410].

Managed objects are accessed via a virtual information store, termed the Management Information Base or MIB. MIB objects are generally accessed through the Simple Network Management Protocol (SNMP). Objects in the MIB are defined using the mechanisms defined in the Structure of Management Information (SMI). This memo specifies a MIB module that is compliant to the SMIv2, which is described in STD 58, RFC 2578 [RFC2578], STD 58, RFC 2579 [RFC2579] and STD 58, RFC 2580 [RFC2580].

2. Overview

There is a need for a standardized way of representing a single agent, which supports multiple instances of one MIB. This is presently true for at least 3 standard MIBs, and is likely to become true for more and more MIBs as time passes. For example:

- multiple instances of a bridge supported within a single device that has a single agent;

- multiple repeaters supported by a single agent;

- multiple OSPF backbone areas, each operating as part of its own Autonomous System, and each identified by the same area-id (e.g., 0.0.0.0), supported inside a single router with one agent.

The single agent present in each of these cases implies a relationship binds these entities. Effectively, there is some "overall" physical entity which houses the sum of the things managed by that one agent, i.e., there are multiple "logical" entities within a single physical entity. Sometimes, the overall physical entity contains multiple (smaller) physical entities, and each logical entity is associated with a particular physical entity. Sometimes, the overall physical entity is a "compound" of multiple physical entities (e.g., a stack of stackable hubs).

What is needed is a way to determine exactly which logical entities are managed by the agent (with some version of SNMP) in order to communicate with the agent about a particular logical entity. When different logical entities are associated with different physical entities within the overall physical entity, it is also useful to be able to use this information to distinguish between logical entities.
In these situations, there is no need for varbinds for multiple logical entities to be referenced in the same SNMP message (although that might be useful in the future). Rather, it is sufficient, and in some situations preferable, to have the context/community in the message identify the logical entity to which the varbinds apply.

Version 2 of this MIB addresses new requirements, which have emerged since the publication of the first Entity MIB (RFC 2037 [RFC2037]). There is a need for a standardized way of providing non-volatile, administratively-assigned identifiers for physical components represented with the Entity MIB. There is also a need to align the Entity MIB with the SNMPv3 administrative framework (STD 62, RFC 3411 [RFC3411]). Implementation experience has shown that additional physical component attributes are also desirable.

Version 3 of this MIB addresses new requirements, which have emerged since the publication of the second Entity MIB (RFC 2737 [RFC2737]). There is a need to identify physical entities that are central processing units (CPUs) and a need to provide a textual convention that identifies an entPhysicalIndex value or zero, where the value zero has application-specific semantics. Two new objects have been added to the entPhysicalTable to identify the manufacturing date and provide additional URIs for a particular physical entity.

2.1. Terms

Some new terms are used throughout this document:

- Naming Scope
 A "naming scope" represents the set of information that may be potentially accessed through a single SNMP operation. All instances within the naming scope share the same unique identifier space. For SNMPv1, a naming scope is identified by the value of the associated 'entLogicalCommunity' instance. For SNMPv3, the term 'context' is used instead of 'naming scope'. The complete definition of an SNMP context can be found in section 3.3.1 of RFC 3411 [RFC3411].

- Multi-Scoped Object
 A MIB object, for which identical instance values identify different managed information in different naming scopes, is called a "multi-scoped" MIB object.

- Single-Scoped Object
 A MIB object, for which identical instance values identify the same managed information in different naming scopes, is called a "single-scoped" MIB object.
- Logical Entity
 A managed system contains one or more logical entities, each
 represented by at most one instantiation of each of a particular
 set of MIB objects. A set of management functions is associated
 with each logical entity. Examples of logical entities include
 routers, bridges, print-servers, etc.

- Physical Entity
 A "physical entity" or "physical component" represents an
 identifiable physical resource within a managed system. Zero or
 more logical entities may utilize a physical resource at any given
 time. Determining which physical components are represented by an
 agent in the EntPhysicalTable is an implementation-specific matter.
 Typically, physical resources (e.g., communications ports,
 backplanes, sensors, daughter-cards, power supplies, the overall
 chassis), which can be managed via functions associated with one or
 more logical entities, are included in the MIB.

- Containment Tree
 Each physical component may be modeled as 'contained' within
 another physical component. A "containment-tree" is the conceptual
 sequence of entPhysicalIndex values that uniquely specifies the
 exact physical location of a physical component within the managed
 system. It is generated by 'following and recording' each
 'entPhysicalContainedIn' instance 'up the tree towards the root',
 until a value of zero indicating no further containment is found.

2.2. Relationship to Community Strings

For community-based SNMP, differentiating logical entities is one
(but not the only) purpose of the community string (RFC 1157
[RFC1157]). This is accommodated by representing each community
string as a logical entity.

Note that different logical entities may share the same naming scope
and, therefore, the same values of entLogicalCommunity. This is
possible, providing they have no need for the same instance of a MIB
object to represent different managed information.

2.3. Relationship to SNMP Contexts

Version 2 of the Entity MIB contains support for associating SNMPv3
contexts with logical entities. Two new MIB objects, defining an
SnmpEngineID and ContextName pair, are used together to identify an
SNMP context associated with a logical entity. This context can be
used (in conjunction with the entLogicalTAddress and
entLogicalTDomain MIB objects) to send SNMPv3 messages on behalf of a
particular logical entity.
2.4. Relationship to Proxy Mechanisms

The Entity MIB is designed to allow functional component discovery. The administrative relationships between different logical entities are not visible in any Entity MIB tables. A Network Management System (NMS) cannot determine whether MIB instances in different naming scopes are realized locally or remotely (e.g., via some proxy mechanism) by examining any particular Entity MIB objects.

The management of administrative framework functions is not an explicit goal of the Entity MIB WG at this time. This new area of functionality may be revisited after some operational experience with the Entity MIB is gained.

Note that for community-based versions of SNMP, a network administrator will likely be able to associate community strings with naming scopes that have proprietary mechanisms, as a matter of configuration. There are no mechanisms for managing naming scopes defined in this MIB.

2.5. Relationship to a Chassis MIB

Some readers may recall that a previous IETF working group attempted to define a Chassis MIB. No consensus was reached by that working group, possibly because its scope was too broad. As such, it is not the purpose of this MIB to be a "Chassis MIB replacement", nor is it within the scope of this MIB to contain all the information which might be necessary to manage a "chassis". On the other hand, the entities represented by an implementation of this MIB might well be contained in a chassis.

2.6. Relationship to the Interfaces MIB

The Entity MIB contains a mapping table identifying physical components that have 'external values' (e.g., ifIndex) associated with them within a given naming scope. This table can be used to identify the physical location of each interface in the ifTable (RFC 2863 [RFC2863]). Because ifIndex values in different contexts are not related to one another, the interface to physical component associations are relative to the same logical entity within the agent.

The Entity MIB also contains 'entPhysicalName' and 'entPhysicalAlias' objects, which approximate the semantics of the 'ifName' and 'ifAlias' objects (respectively) from the Interfaces MIB [RFC2863], for all types of physical components.
2.7. Relationship to the Other MIBs

The Entity MIB contains a mapping table identifying physical components that have identifiers from other standard MIBs associated with them. For example, this table can be used along with the physical mapping table to identify the physical location of each repeater port in the rptrPortTable, or each interface in the ifTable.

2.8. Relationship to Naming Scopes

There is some question as to which MIB objects may be returned within a given naming scope. MIB objects which are not multi-scoped within a managed system are likely to ignore context information in implementation. In such a case, it is likely such objects will be returned in all naming scopes (e.g., not just the ‘default’ naming scope or the SNMPv3 default context).

For example, a community string used to access the management information for logical device ‘bridge2’ may allow access to all the non-bridge related objects in the ‘default’ naming scope, as well as a second instance of the Bridge MIB (RFC 1493 [RFC1493]).

The isolation of single-scoped MIB objects by the agent is an implementation-specific matter. An agent may wish to limit the objects returned in a particular naming scope to only the multi-scoped objects in that naming scope (e.g., system group and the Bridge MIB). In this case, all single-scoped management information would belong to a common naming scope (e.g., ‘default’), which itself may contain some multi-scoped objects (e.g., system group).

2.9. Multiple Instances of the Entity MIB

It is possible that more than one agent may exist in a managed system. In such cases, multiple instances of the Entity MIB (representing the same managed objects) may be available to an NMS.

In order to reduce complexity for agent implementation, multiple instances of the Entity MIB are not required to be equivalent or even consistent. An NMS may be able to ‘align’ instances returned by different agents by examining the columns of each table, but vendor-specific identifiers and (especially) index values are likely to be different. Each agent may be managing different subsets of the entire chassis as well.

When all of a physically-modular device is represented by a single agent, the entry (for which entPhysicalContainedIn has the value zero) would likely have ‘chassis’ as the value of its entPhysicalClass. Alternatively, for an agent on a module where the
agent represents only the physical entities on that module (not those on other modules), the entry (for which entPhysicalContainedIn has the value zero) would likely have 'module' as the value of its entPhysicalClass.

An agent implementation of the entLogicalTable is not required to contain information about logical entities managed primarily by other agents. That is, the entLogicalTAddress and entLogicalTDomain objects in the entLogicalTable are provided to support an historical multiplexing mechanism, not to identify other SNMP agents.

Note that the Entity MIB is a single-scoped MIB, in the event an agent represents the MIB in different naming scopes.

2.10. Re-Configuration of Entities

Most of the MIB objects defined in this MIB have, at most, a read-only MAX-ACCESS clause. This is a conscious decision by the working group to limit this MIB’s scope. The second version of the Entity MIB allows a network administrator to configure some common attributes of physical components.

2.11. Textual Convention Change

Version 1 of the Entity MIB contains three MIB objects defined with the (now obsolete) DisplayString textual convention. In version 2 of the Entity MIB, the syntax for these objects has been updated to use the (now preferred) SnmpAdminString textual convention.

The entmib working group (which was in charge with the document at that point) realized that this change is not strictly supported by SMIv2. In their judgment, the alternative of deprecating the old objects and defining new objects would have had a more adverse impact on backward compatibility and interoperability, given the particular semantics of these objects.

2.12. MIB Structure

The Entity MIB contains five groups of MIB objects:

- entityPhysical group
 Describes the physical entities managed by a single agent.

- entityLogical group
 Describes the logical entities managed by a single agent.
- entityMapping group
 Describes the associations between the physical entities, logical
 entities, interfaces, and non-interface ports managed by a single
 agent.

- entityGeneral group
 Describes general system attributes shared by potentially all types
 of entities managed by a single agent.

- entityNotifications group
 Contains status indication notifications.

2.12.1. entityPhysical Group

This group contains a single table to identify physical system
components, called the entPhysicalTable.

The entPhysicalTable contains one row per physical entity, and must
always contain at least one row for an "overall" physical entity,
which should have an entPhysicalClass value of 'stack(11)',
'chassis(3)' or 'module(9)'.

Each row is indexed by an arbitrary, small integer, and contains a
description and type of the physical entity. It also optionally
contains the index number of another entPhysicalEntry, indicating a
containment relationship between the two.

Version 2 of the Entity MIB provides additional MIB objects for each
physical entity. Some common read-only attributes have been added,
as well as three writable string objects.

- entPhysicalAlias
 This string can be used by an NMS as a non-volatile identifier for
 the physical component. Maintaining a non-volatile string for
every physical component represented in the entPhysicalTable can be
costly and unnecessary. An agent may algorithmically generate
'entPhysicalAlias' strings for particular entries (e.g., based on
the entPhysicalClass value).

- entPhysicalAssetID
 This string is provided to store a user-specific asset identifier
 for removable physical components. In order to reduce the non-
volatile storage needed by a particular agent, a network
administrator should only assign asset identifiers to physical
entities that are field-replaceable (i.e., not permanently
contained within another physical entity).
- entPhysicalSerialNum
 This string is provided to store a vendor-specific serial number string for physical components. This writable object is used when an agent cannot identify the serial numbers of all installed physical entities, and a network administrator wishes to configure the non-volatile serial number strings manually (via an NMS application).

Version 3 of the Entity MIB provides two additional MIB objects for each physical entity:

- entPhysicalMfgDate
 This object contains the date of manufacturing of the managed entity. If the manufacturing date is unknown or not supported the object is not instantiated. The special value ‘0000000000000000’H may also be returned in this case.

- entPhysicalUris
 This object provides additional identification information about the physical entity.

This object contains one or more Uniform Resource Identifiers (URIs) and, therefore, the syntax of this object must conform to RFC 3986 [RFC3986] section 2. Uniform Resource Names (URNs), RFC 3406 [RFC3406], are resource identifiers with the specific requirements for enabling location independent identification of a resource, as well as longevity of reference. URNs are part of the larger URI family with the specific goal of providing persistent naming of resources. URI schemes and URN name spaces are registered by IANA (see http://www.iana.org/assignments/uri-schemes and http://www.iana.org/assignments/urn-namespaces).

For example, the entPhysicalUris object may be used to encode a URI containing a Common Language Equipment Identifier (CLEI) URN for the managed physical entity. The URN name space for CLEIs is defined in [RFC4152], and the CLEI format is defined in [T1.213][T1.213a]. For example, an entPhysicalUris instance may have the value of

```
URN:CLEI:D4CE18B7AA
```

[RFC3986] and [RFC4152] identify this as a URI in the CLEI URN name space. The specific CLEI code, D4CE18B7AA, is based on the example provided in [T1.213a].

Multiple URIs may be present and are separated by white space characters. Leading and trailing white space characters are ignored.
If no additional identification information is known about the physical entity or supported, the object is not instantiated.

2.12.2. entityLogical Group

This group contains a single table to identify logical entities, called the entLogicalTable.

The entLogicalTable contains one row per logical entity. Each row is indexed by an arbitrary, small integer and contains a name, description, and type of the logical entity. It also contains information to allow access to the MIB information for the logical entity. This includes SNMP versions that use a community name (with some form of implied context representation) and SNMP versions that use the SNMP ARCH [RFC3411] method of context identification.

If an agent represents multiple logical entities with this MIB, then this group must be implemented for all logical entities known to the agent.

If an agent represents a single logical entity, or multiple logical entities within a single naming scope, then implementation of this group may be omitted by the agent.

2.12.3. entityMapping Group

This group contains three tables to identify associations between different system components.

- entLPMappingTable
 This table contains mappings between entLogicalIndex values (logical entities) and entPhysicalIndex values (the physical components supporting that entity). A logical entity can map to more than one physical component, and more than one logical entity can map to (share) the same physical component. If an agent represents a single logical entity, or multiple logical entities within a single naming scope, then implementation of this table may be omitted by the agent.

- entAliasMappingTable
 This table contains mappings between entLogicalIndex, entPhysicalIndex pairs, and 'alias' object identifier values. This allows resources managed with other MIBs (e.g., repeater ports, bridge ports, physical and logical interfaces) to be identified in the physical entity hierarchy. Note that each alias identifier is only relevant in a particular naming scope. If an agent represents a single logical entity, or multiple logical entities within a
single naming scope, then implementation of this table may be
omitted by the agent.

- entPhysicalContainsTable
 This table contains simple mappings between
 ‘entPhysicalContainedIn’ values for each container/’containee’
 relationship in the managed system. The indexing of this table
 allows an NMS to quickly discover the ‘entPhysicalIndex’ values for
 all children of a given physical entity.

2.12.4. entityGeneral Group

This group contains general information relating to the other object
groups.

At this time, the entGeneral group contains a single scalar object
(entLastChangeTime), which represents the value of sysUptime when any
part of the Entity MIB configuration last changed.

2.12.5. entityNotifications Group

This group contains notification definitions relating to the overall
status of the Entity MIB instantiation.

2.13. Multiple Agents

Even though a primary motivation for this MIB is to represent the
multiple logical entities supported by a single agent, another
motivation is to represent multiple logical entities supported by
multiple agents (in the same "overall" physical entity). Indeed, it
is implicit in the SNMP architecture that the number of agents is
transparent to a network management station.

However, there is no agreement at this time as to the degree of
cooperation that should be expected for agent implementations.
Therefore, multiple agents within the same managed system are free to
implement the Entity MIB independently. (For more information, refer
to Section 2.9, "Multiple Instances of the Entity MIB".)

2.14. Changes Since RFC 2037

2.14.1. Textual Conventions

The PhysicalClass TC text has been clarified, and a new enumeration
to support ‘stackable’ components has been added. The
SnmpEngineIdOrNone TC has been added to support SNMPv3.

2.14.2. New entPhysicalTable Objects
The entPhysicalHardwareRev, entPhysicalFirmwareRev, and entPhysicalSoftwareRev objects have been added for revision identification.

The entPhysicalSerialNum, entPhysicalMfgName, entPhysicalModelName, and entPhysicalIsFru objects have been added for better vendor identification for physical components. In the event the agent cannot identify this information, the entPhysicalSerialNum object can be set by a management station.

The entPhysicalAlias and entPhysicalAssetID objects have been added for better user component identification. These objects are intended to be set by a management station and preserved by the agent across restarts.

2.14.3. New entLogicalTable Objects

The entLogicalContextEngineID and entLogicalContextName objects have been added to provide an SNMP context for SNMPv3 access on behalf of a logical entity.

2.14.4. Bug Fixes

A bug was fixed in the entLogicalCommunity object. The subrange was incorrect (1..255) and is now (0..255). The description clause has also been clarified. This object is now deprecated.

The entLastChangeTime object description has been changed to generalize the events that cause an update to the last change timestamp.

The syntax was changed from DisplayString to SnmpAdminString for the entPhysicalDescr, entPhysicalName, and entLogicalDescr objects.

2.15. Changes Since RFC 2737

2.15.1. Textual Conventions

The PhysicalIndexOrZero TC has been added to allow objects to reference an entPhysicalIndex value or zero. The PhysicalClass TC has been extended to support a new enumeration for central processing units.

2.15.2. New Objects

The entPhysicalMfgDate object has been added to the entPhysicalTable to provide the date of manufacturing of the managed entity.
The entPhysicalUris object has been added to the entPhysicalTable to provide additional identification information about the physical entity, such as a Common Language Equipment Identifier (CLEI) URN.

2.15.3. Bug Fixes

The syntax was changed from INTEGER to Integer32 for the entPhysicalParentRelPos, entLogicalIndex, and entAliasLogicalIndexOrZero objects, and from INTEGER to PhysicalIndexOrZero for the entPhysicalContainedIn object.

2.16. Changes Since RFC 4133

2.16.1. MIB module addition Creation of a new MIB module IANA-ENTITY-MIB which makes the PhysicalIndex TC an IANA-maintained Textual Convention. Over time, there is the need to add new enumerated values for PhysicalClass. If the syntax of IANAPhysicalClass were defined in this MIB module then a new version of this MIB would have to be re-issued in order to define new values.

2.16.2. Modification to some of the MIB objects

Addition of a new MIB object to the entPhysicalTable - entPhysicalUUID. In comparison to entPhysicalUris the new object is read-only and restricted to a fixed size to allow only for RFC 4122 [RFC4122] compliant values.

Creation of a new MODULE-COMPLIANCE module entity4CRCCompliance for devices with constrained resources like batteries, which might require a limited number of objects to be supported (entPhysicalClass, entPhysicalName, entPhysicalUUID)

2.16.3. New TC for Universal Unique Identifier

Two new Textual Conventions (TC) UUID and UUIDorZero were created to represent a Universal Unique Identifier (UUID), with a syntax that conforms to RFC 4122, section 4.1. Defining them as TCs will allow for future re-use in other MIB modules that will import the TC. These Textual Conventions are included in the UUID-TC-MIB module.

3. MIB Definitions

3.1. ENTITY MIB

ENTITY-MIB DEFINITIONS ::= BEGIN

IMPORTS

MODULE-IDENTITY, OBJECT-TYPE, mib-2, NOTIFICATION-TYPE, Integer32

Romascanu et. al. Standards Track [Page 15]
FROM SNMPv2-SMI
TDomain, TAddress, TEXTUAL-CONVENTION,
AutonomousType, RowPointer, TimeStamp, TruthValue,
DateAndTime
FROM SNMPv2-TC
MODULE-COMPLIANCE, OBJECT-GROUP, NOTIFICATION-GROUP
FROM SNMPv2-CONF
SnmpAdminString
FROM SNMP-FRAMEWORK-MIB
Uri
FROM URI-TC-MIB
UUIDorZero
FROM UUID-TC-MIB
IANAPhysicalClass
FROM IANA-ENTITY-MIB;

entityMIB MODULE-IDENTITY
LAST-UPDATED "201210090000Z"
ORGANIZATION "IETF Energy Management Working Group"
CONTACT-INFO
" WG E-mail: eman@ietf.org
Mailing list subscription info:
 http://www.ietf.org/mailman/listinfo/eman

Andi Bierman
Yumaworks
Email: andy@yumaworks.com

Dan Romascanu
AVAYA
Park Atidim, Bldg. #3
Tel Aviv, 61581
Israel
Phone: +972-3-6458414
Email: dromasca@avaya.com

Juergen Quittek
NEC Europe Ltd.
Network Research Division
Kurfuersten-Anlage 36
Heidelberg 69115
DE
Phone: +49 6221 4342-115
Email: quittek@neclab.eu

Mouli Chandramouli
Cisco Systems, Inc.
Sarjapur Outer Ring Road
DESCRIPTION
"The MIB module for representing multiple logical entities supported by a single SNMP agent.

Copyright (C) The Internet Society (2012). This version of this MIB module is part of RFC xxxx; see the RFC itself for full legal notices."

REVISION "201210090000Z"
DESCRIPTION
"Entity MIB (Version 4).
This revision obsoletes RFC 4133.
Additions:

Changes:
- according to comments made on draft-eman/rfc4133bis-02
 The UUIDorZero TC is now imported from UUID-TC-MIB.
This version published as RFC xxxx."

REVISION "201210040000Z"
DESCRIPTION
"Entity MIB (Version 4).
This revision obsoletes RFC 4133.
Additions:

Changes:
- according to comments made on draft-eman/rfc4133bis-01
 split the PhysicalUUID TC into two TCs
This version published as RFC xxxx."

REVISION "201210030000Z"
DESCRIPTION
"Entity MIB (Version 4).
This revision obsoletes RFC 4133.
Additions:
- PhysicalUUID TC
Changes:
- according to comments made on draft-eman/rfc4133bis-00
This version published as RFC xxxx.

REVISION "201209100000Z"
DESCRIPTION
"Entity MIB (Version 4).
This revision obsoletes RFC 4133.
Additions:
-
Changes:
- according to comments made on draft-chandramouli-01
This version published as RFC xxxx.

REVISION "201206100000Z"
DESCRIPTION
"Initial Version of Entity MIB (Version 4).
This revision obsoletes RFC 4133.
Additions:
-
Changes:
-
This version published as RFC xxxx.

REVISION "200508100000Z"
DESCRIPTION
"Initial Version of Entity MIB (Version 3).
This revision obsoletes RFC 2737.
Additions:
- cpu(12) enumeration added to IANAPhysicalClass TC
- DISPLAY-HINT clause to PhysicalIndex TC
- PhysicalIndexOrZero TC
- entPhysicalMfgDate object
- entPhysicalUris object
Changes:
- entPhysicalContainedIn SYNTAX changed from INTEGER to PhysicalIndexOrZero
This version published as RFC 4133.

REVISION "199912070000Z"
DESCRIPTION
"Initial Version of Entity MIB (Version 2).
This revision obsoletes RFC 2037.
This version published as RFC 2737.

REVISION "199610310000Z"
DESCRIPTION
"Initial version (version 1), published as
entityMIBObjects OBJECT IDENTIFIER ::= { entityMIB 1 }

-- MIB contains four groups
entityPhysical OBJECT IDENTIFIER ::= { entityMIBObjects 1 }
entityLogical OBJECT IDENTIFIER ::= { entityMIBObjects 2 }
entityMapping OBJECT IDENTIFIER ::= { entityMIBObjects 3 }
entityGeneral OBJECT IDENTIFIER ::= { entityMIBObjects 4 }

-- Textual Conventions
PhysicalIndex ::= TEXTUAL-CONVENTION
DISPLAY-HINT "d"
STATUS current
DESCRIPTION
 "An arbitrary value that uniquely identifies the physical entity. The value
 should be a small, positive integer. Index values for different physical
 entities are not necessarily contiguous."
SYNTAX Integer32 (1..2147483647)

PhysicalIndexOrZero ::= TEXTUAL-CONVENTION
DISPLAY-HINT "d"
STATUS current
DESCRIPTION
 "This textual convention is an extension of the PhysicalIndex
 convention, which defines a greater than zero value used to identify a
 physical entity. This extension permits the additional value of zero. The
 semantics of the value zero are object-specific and must, therefore, be
 defined as part of the description of any object that uses this syntax. Examples of
 the usage of this extension are situations where none or all physical entities need
 to be referenced."
SYNTAX Integer32 (0..2147483647)

SnmpEngineIdOrNone ::= TEXTUAL-CONVENTION
STATUS current
DESCRIPTION
 "A specially formatted SnmpEngineID string for use with the Entity MIB."
If an instance of an object of SYNTAX SnmpEngineIdOrNone has a non-zero length, then the object encoding and semantics are defined by the SnmpEngineID textual convention (see STD 62, RFC 3411 [RFC3411]).

If an instance of an object of SYNTAX SnmpEngineIdOrNone contains a zero-length string, then no appropriate SnmpEngineID is associated with the logical entity (i.e., SNMPv3 is not supported)."

SYNTAX OCTET STRING (SIZE(0..32)) -- empty string or SnmpEngineID

-- The Physical Entity Table
entPhysicalTable OBJECT-TYPE
SYNTAX SEQUENCE OF EntPhysicalEntry
MAX-ACCESS not-accessible
STATUS current
DESCRIPTION "This table contains one row per physical entity. There is always at least one row for an 'overall' physical entity."
::= { entityPhysical 1 }

entPhysicalEntry OBJECT-TYPE
SYNTAX EntPhysicalEntry
MAX-ACCESS not-accessible

STATUS current
DESCRIPTION "Information about a particular physical entity. Each entry provides objects (entPhysicalDescr, entPhysicalVendorType, and entIANAPhysicalClass) to help an NMS identify and characterize the entry, and objects (entPhysicalContainedIn and entPhysicalParentRelPos) to help an NMS relate the particular entry to other entries in this table."
INDEX { entPhysicalIndex }
::= { entPhysicalTable 1 }

EntPhysicalEntry ::= SEQUENCE {
 entPhysicalIndex PhysicalIndex,
 entPhysicalDescr SnmpAdminString,
 entPhysicalVendorType AutonomousType,
 entPhysicalContainedIn PhysicalIndexOrZero,
entPhysicalClass IANAPhysicalClass,
entPhysicalParentRelPos Integer32,
entPhysicalName SnmpAdminString,
entPhysicalHardwareRev SnmpAdminString,
entPhysicalFirmwareRev SnmpAdminString,
entPhysicalSoftwareRev SnmpAdminString,
entPhysicalSerialNum SnmpAdminString,
entPhysicalMfgName SnmpAdminString,
entPhysicalModelName SnmpAdminString,
entPhysicalAlias SnmpAdminString,
entPhysicalAssetID SnmpAdminString,
entPhysicalIsFRU TruthValue,
entPhysicalMfgDate DateAndTime,
entPhysicalUris Uri,
entPhysicalUUID UUIDorZero

entPhysicalIndex OBJECT-TYPE
SYNTAX PhysicalIndex
MAX-ACCESS not-accessible
STATUS current
DESCRIPTION
"The index for this entry."
::= { entPhysicalEntry 1 }

entPhysicalDescr OBJECT-TYPE
SYNTAX SnmpAdminString
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"A textual description of physical entity. This object should contain a string that identifies the manufacturer's name for the physical entity, and should be set to a distinct value for each version or model of the physical entity."
::= { entPhysicalEntry 2 }

entPhysicalVendorType OBJECT-TYPE
SYNTAX AutonomousType
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"An indication of the vendor-specific hardware type of the physical entity. Note that this is different from the definition of MIB-II's sysObjectID.

An agent should set this object to an enterprise-specific
registration identifier value indicating the specific equipment type in detail. The associated instance of entIANAPhysicalClass is used to indicate the general type of hardware device.

If no vendor-specific registration identifier exists for this physical entity, or the value is unknown by this agent, then the value \((0\ 0\) is returned.

\[
::= \{ \text{entPhysicalEntry}\ 3 \}
\]

entPhysicalContainedIn OBJECT-TYPE
SYNTAX PhysicalIndexOrZero
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"The value of entPhysicalIndex for the physical entity which 'contains' this physical entity. A value of zero indicates this physical entity is not contained in any other physical entity. Note that the set of 'containment' relationships define a strict hierarchy; that is, recursion is not allowed.

In the event that a physical entity is contained by more than one physical entity (e.g., double-wide modules), this object should identify the containing entity with the lowest value of entPhysicalIndex."

\[
::= \{ \text{entPhysicalEntry}\ 4 \}
\]

entPhysicalClass OBJECT-TYPE
SYNTAX IANAPhysicalClass
MAX-ACCESS read-only

STATUS current
DESCRIPTION
"An indication of the general hardware type of the physical entity.

An agent should set this object to the standard enumeration value that most accurately indicates the general class of the physical entity, or the primary class if there is more than one entity.

If no appropriate standard registration identifier exists for this physical entity, then the value 'other(1)' is returned. If the value is unknown by this agent, then the value 'unknown(2)' is returned."
::= { entPhysicalEntry 5 }

entPhysicalParentRelPos OBJECT-TYPE
SYNTAX Integer32 (-1..2147483647)
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"An indication of the relative position of this 'child'
component among all its 'sibling' components. Sibling
components are defined as entPhysicalEntries that share the
same instance values of each of the entPhysicalContainedIn
and entPhysicalClass objects.

An NMS can use this object to identify the relative ordering
for all sibling components of a particular parent
(identified by the entPhysicalContainedIn instance in each
sibling entry).

If possible, this value should match any external labeling
of the physical component. For example, for a container
(e.g., card slot) labeled as 'slot #3',
entPhysicalParentRelPos should have the value '3'. Note
that the entPhysicalEntry for the module plugged in slot 3
should have an entPhysicalParentRelPos value of '1'.

If the physical position of this component does not match
any external numbering or clearly visible ordering, then
user documentation or other external reference material
should be used to determine the parent-relative position.
If this is not possible, then the agent should assign a
consistent (but possibly arbitrary) ordering to a given set
of 'sibling' components, perhaps based on internal
representation of the components.

If the agent cannot determine the parent-relative position
for some reason, or if the associated value of
entPhysicalContainedIn is '0', then the value '−1' is
returned. Otherwise, a non-negative integer is returned,
indicating the parent-relative position of this physical
entity.

Parent-relative ordering normally starts from '1' and
continues to 'N', where 'N' represents the highest
positioned child entity. However, if the physical entities
(e.g., slots) are labeled from a starting position of zero,
then the first sibling should be associated with an
entPhysicalParentRelPos value of '0'. Note that this
ordering may be sparse or dense, depending on agent
implementation.

The actual values returned are not globally meaningful, as each ‘parent’ component may use different numbering algorithms. The ordering is only meaningful among siblings of the same parent component.

The agent should retain parent-relative position values across reboots, either through algorithmic assignment or use of non-volatile storage."

::= { entPhysicalEntry 6 }

entPhysicalName OBJECT-TYPE
SYNTAX SnmpAdminString
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"The textual name of the physical entity. The value of this object should be the name of the component as assigned by the local device and should be suitable for use in commands entered at the device’s ‘console’. This might be a text name (e.g., ‘console’) or a simple component number (e.g., port or module number, such as '1'), depending on the physical component naming syntax of the device.

If there is no local name, or if this object is otherwise not applicable, then this object contains a zero-length string.

Note that the value of entPhysicalName for two physical entities will be the same in the event that the console interface does not distinguish between them, e.g., slot-1 and the card in slot-1."

::= { entPhysicalEntry 7 }

extPhysicalHardwareRev OBJECT-TYPE
SYNTAX SnmpAdminString
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"The vendor-specific hardware revision string for the physical entity. The preferred value is the hardware revision identifier actually printed on the component itself (if present).

Note that if revision information is stored internally in a
non-printable (e.g., binary) format, then the agent must convert such information to a printable format, in an implementation-specific manner.

If no specific hardware revision string is associated with the physical component, or if this information is unknown to the agent, then this object will contain a zero-length string."
 ::= { entPhysicalEntry 8 }

entPhysicalFirmwareRev OBJECT-TYPE
SYNTAX SnmpAdminString
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"The vendor-specific firmware revision string for the physical entity.

Note that if revision information is stored internally in a non-printable (e.g., binary) format, then the agent must convert such information to a printable format, in an implementation-specific manner.

If no specific firmware programs are associated with the physical component, or if this information is unknown to the agent, then this object will contain a zero-length string."
 ::= { entPhysicalEntry 9 }

entPhysicalSoftwareRev OBJECT-TYPE
SYNTAX SnmpAdminString
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"The vendor-specific software revision string for the physical entity.

Note that if revision information is stored internally in a non-printable (e.g., binary) format, then the agent must convert such information to a printable format, in an implementation-specific manner.

If no specific software programs are associated with the physical component, or if this information is unknown to the agent, then this object will contain a zero-length string."
 ::= { entPhysicalEntry 10 }

entPhysicalSerialNum OBJECT-TYPE
SYNTAX SnmpAdminString (SIZE (0..32))
MAX-ACCESS read-write
STATUS current
DESCRIPTION
"The vendor-specific serial number string for the physical entity. The preferred value is the serial number string actually printed on the component itself (if present).

On the first instantiation of an physical entity, the value of entPhysicalSerialNum associated with that entity is set to the correct vendor-assigned serial number, if this information is available to the agent. If a serial number is unknown or non-existent, the entPhysicalSerialNum will be set to a zero-length string instead.

Note that implementations that can correctly identify the serial numbers of all installed physical entities do not need to provide write access to the entPhysicalSerialNum object. Agents which cannot provide non-volatile storage for the entPhysicalSerialNum strings are not required to implement write access for this object.

Not every physical component will have a serial number, or even need one. Physical entities for which the associated value of the entPhysicalIsFRU object is equal to ‘false(2)’ (e.g., the repeater ports within a repeater module), do not need their own unique serial number. An agent does not have to provide write access for such entities, and may return a zero-length string.

If write access is implemented for an instance of entPhysicalSerialNum, and a value is written into the instance, the agent must retain the supplied value in the entPhysicalSerialNum instance (associated with the same physical entity) for as long as that entity remains instantiated. This includes instantiations across all re-initializations/reboots of the network management system, including those resulting in a change of the physical entity’s entPhysicalIndex value."

::= { entPhysicalEntry 11 }

entPhysicalMfgName OBJECT-TYPE
SYNTAX SnmpAdminString
MAX-ACCESS read-only
STATUS current
DESCRIPTION

Romascun et. al. Standards Track [Page 26]
"The name of the manufacturer of this physical component. The preferred value is the manufacturer name string actually printed on the component itself (if present).

Note that comparisons between instances of the entPhysicalModelName, entPhysicalFirmwareRev, entPhysicalSoftwareRev, and the entPhysicalSerialNum objects, are only meaningful amongst entPhysicalEntries with the same value of entPhysicalMfgName.

If the manufacturer name string associated with the physical component is unknown to the agent, then this object will contain a zero-length string."

::= { entPhysicalEntry 12 }

entPhysicalModelName OBJECT-TYPE
SYNTAX SnmpAdminString
MAX-ACCESS read-only
STATUS current
DESCRIPTION "The vendor-specific model name identifier string associated with this physical component. The preferred value is the customer-visible part number, which may be printed on the component itself.

If the model name string associated with the physical component is unknown to the agent, then this object will contain a zero-length string."

::= { entPhysicalEntry 13 }

entPhysicalAlias OBJECT-TYPE
SYNTAX SnmpAdminString (SIZE (0..32))
MAX-ACCESS read-write
STATUS current
DESCRIPTION "This object is an 'alias' name for the physical entity, as specified by a network manager, and provides a non-volatile 'handle' for the physical entity.

On the first instantiation of a physical entity, the value of entPhysicalAlias associated with that entity is set to the zero-length string. However, the agent may set the value to a locally unique default value, instead of a zero-length string.

If write access is implemented for an instance of entPhysicalAlias, and a value is written into the instance, the agent must retain the supplied value in the
entPhysicalAlias instance (associated with the same physical entity) for as long as that entity remains instantiated. This includes instantiations across all re-initializations/reboots of the network management system, including those resulting in a change of the physical entity’s entPhysicalIndex value.

::= { entPhysicalEntry 14 }

entPhysicalAssetID OBJECT-TYPE
SYNTAX SnmpAdminString (SIZE (0..32))
MAX-ACCESS read-write
STATUS current
DESCRIPTION
"This object is a user-assigned asset tracking identifier (as specified by a network manager) for the physical entity, and provides non-volatile storage of this information.

On the first instantiation of a physical entity, the value of entPhysicalAssetID associated with that entity is set to the zero-length string.

Not every physical component will have an asset tracking identifier, or even need one. Physical entities for which the associated value of the entPhysicalIsFRU object is equal to 'false(2)' (e.g., the repeater ports within a repeater module), do not need their own unique asset tracking identifier. An agent does not have to provide write access for such entities, and may instead return a zero-length string.

If write access is implemented for an instance of entPhysicalAssetID, and a value is written into the instance, the agent must retain the supplied value in the entPhysicalAssetID instance (associated with the same physical entity) for as long as that entity remains instantiated. This includes instantiations across all re-initializations/reboots of the network management system, including those resulting in a change of the physical entity’s entPhysicalIndex value,

If no asset tracking information is associated with the physical component, then this object will contain a zero-length string."

::= { entPhysicalEntry 15 }

entPhysicalIsFRU OBJECT-TYPE
SYNTAX TruthValue
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"This object indicates whether or not this physical entity is considered a 'field replaceable unit' by the vendor. If this object contains the value 'true(1)' then this entPhysicalEntry identifies a field replaceable unit. For all entPhysicalEntries that represent components permanently contained within a field replaceable unit, the value 'false(2)' should be returned for this object."
::= { entPhysicalEntry 16 }

entPhysicalMfgDate OBJECT-TYPE
SYNTAX DateAndTime
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"This object contains the date of manufacturing of the managed entity. If the manufacturing date is unknown or not supported, the object is not instantiated. The special value '0000000000000000'H may also be returned in this case."
::= { entPhysicalEntry 17 }

entPhysicalUris OBJECT-TYPE
SYNTAX Uri
MAX-ACCESS read-write
STATUS current
DESCRIPTION
"This object contains additional identification information about the physical entity. The object contains URIs and, therefore, the syntax of this object must conform to RFC 3986, section 2.

Multiple URIs may be present and are separated by white space characters. Leading and trailing white space characters are ignored.

If no additional identification information is known about the physical entity or supported, the object is not instantiated. A zero length octet string may also be returned in this case."
REFERENCE
::= { entPhysicalEntry 18 }

entPhysicalUUID OBJECT-TYPE
SYNTAX UUIDorZero
MAX-ACCESS read-only
STATUS current

DESCRIPTION
"This object contains additional identification information about the physical entity. The object contains a Universal Unique Identifier, the syntax of this object must conform to RFC 4122, section 4.1.

A zero length octet string is returned if no UUID information is known."

REFERENCE
"RFC 4122, A Universally Unique IDentifier (UUID) URN Namespace, section 4.1, July 2005."

::= { entPhysicalEntry 19 }

-- The Logical Entity Table
entLogicalTable OBJECT-TYPE
SYNTAX SEQUENCE OF EntLogicalEntry
MAX-ACCESS not-accessible
STATUS current

DESCRIPTION
"This table contains one row per logical entity. For agents that implement more than one naming scope, at least one entry must exist. Agents which instantiate all MIB objects within a single naming scope are not required to implement this table."

 ::= { entityLogical 1 }

entLogicalEntry OBJECT-TYPE
SYNTAX EntLogicalEntry
MAX-ACCESS not-accessible
STATUS current

DESCRIPTION
"Information about a particular logical entity. Entities may be managed by this agent or other SNMP agents (possibly) in the same chassis."

INDEX { entLogicalIndex }
 ::= { entLogicalTable 1 }

EntLogicalEntry ::= SEQUENCE {
 entLogicalIndex Integer32,
 entLogicalDescr SnmpAdminString,
 entLogicalType AutonomousType,
 entLogicalCommunity OCTET STRING,
entLogicalTAddress TAddress,
entLogicalTDomain TDomain,
entLogicalContextEngineID SnmpEngineIdOrNone,
entLogicalContextName SnmpAdminString

entLogicalIndex OBJECT-TYPE
SYNTAX Integer32 (1..2147483647)
MAX-ACCESS not-accessible
STATUS current
DESCRIPTION
"The value of this object uniquely identifies the logical
entity. The value should be a small positive integer; index
values for different logical entities are not necessarily
contiguous."
::= { entLogicalEntry 1 }

entLogicalDescr OBJECT-TYPE
SYNTAX SnmpAdminString
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"A textual description of the logical entity. This object
should contain a string that identifies the manufacturer’s
name for the logical entity, and should be set to a distinct
value for each version of the logical entity."
::= { entLogicalEntry 2 }

entLogicalType OBJECT-TYPE
SYNTAX AutonomousType
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"An indication of the type of logical entity. This will
typically be the OBJECT IDENTIFIER name of the node in the
SMI’s naming hierarchy which represents the major MIB
module, or the majority of the MIB modules, supported by the
logical entity. For example:
 a logical entity of a regular host/router -> mib-2
 a logical entity of a 802.1d bridge -> dot1dBridge
 a logical entity of a 802.3 repeater -> snmpDot3RptrMgmt
If an appropriate node in the SMI’s naming hierarchy cannot
be identified, the value ‘mib-2’ should be used."
::= { entLogicalEntry 3 }
entLogicalCommunity OBJECT-TYPE
SYNTAX OCTET STRING (SIZE (0..255))
MAX-ACCESS read-only
STATUS deprecated
DESCRIPTION
"An SNMPv1 or SNMPv2C community-string, which can be used to access detailed management information for this logical entity. The agent should allow read access with this community string (to an appropriate subset of all managed objects) and may also return a community string based on the privileges of the request used to read this object. Note that an agent may return a community string with read-only privileges, even if this object is accessed with a read-write community string. However, the agent must take care not to return a community string that allows more privileges than the community string used to access this object.

A compliant SNMP agent may wish to conserve naming scopes by representing multiple logical entities in a single 'default' naming scope. This is possible when the logical entities, represented by the same value of entLogicalCommunity, have no object instances in common. For example, 'bridge1' and 'repeater1' may be part of the main naming scope, but at least one additional community string is needed to represent 'bridge2' and 'repeater2'.

Logical entities 'bridge1' and 'repeater1' would be represented by sysOREntries associated with the 'default' naming scope.

For agents not accessible via SNMPv1 or SNMPv2C, the value of this object is the empty string. This object may also contain an empty string if a community string has not yet been assigned by the agent, or if no community string with suitable access rights can be returned for a particular SNMP request.

Note that this object is deprecated. Agents which implement SNMPv3 access should use the entLogicalContextEngineID and entLogicalContextName objects to identify the context associated with each logical entity. SNMPv3 agents may return a zero-length string for this object, or may continue to return a community string (e.g., tri-lingual agent support)."
::= { entLogicalEntry 4 }

entLogicalTAddress OBJECT-TYPE
SYNTAX TAddress
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"The transport service address by which the logical entity receives network management traffic, formatted according to the corresponding value of entLogicalTDomain.

For snmpUDPDomain, a TAddress is 6 octets long: the initial 4 octets contain the IP-address in network-byte order and the last 2 contain the UDP port in network-byte order. Consult 'Transport Mappings for the Simple Network Management Protocol' (STD 62, RFC 3417 [RFC3417]) for further information on snmpUDPDomain."

::= { entLogicalEntry 5 }

entLogicalTDomain OBJECT-TYPE
SYNTAX TDomain
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"Indicates the kind of transport service by which the logical entity receives network management traffic. Possible values for this object are presently found in the Transport Mappings for Simple Network Management Protocol' (STD 62, RFC 3417 [RFC3417])."

::= { entLogicalEntry 6 }

entLogicalContextEngineID OBJECT-TYPE
SYNTAX SnmpEngineIdOrNone
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"The authoritative contextEngineID that can be used to send an SNMP message concerning information held by this logical entity, to the address specified by the associated 'entLogicalTAddress/entLogicalTDomain' pair.

This object, together with the associated entLogicalContextName object, defines the context associated with a particular logical entity, and allows access to SNMP engines identified by a contextEngineId and contextName"
pair.

If no value has been configured by the agent, a zero-length string is returned, or the agent may choose not to instantiate this object at all."

::= { entLogicalEntry 7 }

entLogicalContextName OBJECT-TYPE
SYNTAX SnmpAdminString
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"The contextName that can be used to send an SNMP message concerning information held by this logical entity, to the address specified by the associated 'entLogicalTAddress/entLogicalTDomain' pair.

This object, together with the associated entLogicalContextEngineID object, defines the context associated with a particular logical entity, and allows access to SNMP engines identified by a contextEngineId and contextName pair.

If no value has been configured by the agent, a zero-length string is returned, or the agent may choose not to instantiate this object at all."

::= { entLogicalEntry 8 }

entLPMappingTable OBJECT-TYPE
SYNTAX SEQUENCE OF EntLPMappingEntry
MAX-ACCESS not-accessible
STATUS current
DESCRIPTION
"This table contains zero or more rows of logical entity to physical equipment associations. For each logical entity known by this agent, there are zero or more mappings to the physical resources, which are used to realize that logical entity.

An agent should limit the number and nature of entries in this table such that only meaningful and non-redundant information is returned. For example, in a system that contains a single power supply, mappings between logical entities and the power supply are not useful and should not be included.
Also, only the most appropriate physical component, which is closest to the root of a particular containment tree, should be identified in an entLPMapping entry.

For example, suppose a bridge is realized on a particular module, and all ports on that module are ports on this bridge. A mapping between the bridge and the module would be useful, but additional mappings between the bridge and each of the ports on that module would be redundant (because the entPhysicalContainedIn hierarchy can provide the same information). On the other hand, if more than one bridge were utilizing ports on this module, then mappings between each bridge and the ports it used would be appropriate.

Also, in the case of a single backplane repeater, a mapping for the backplane to the single repeater entity is not necessary.

::= { entityMapping 1 }

entLPMappingEntry OBJECT-TYPE
SYNTAX EntLPMappingEntry
MAX-ACCESS not-accessible

STATUS current
DESCRIPTION
"Information about a particular logical entity to physical equipment association. Note that the nature of the association is not specifically identified in this entry. It is expected that sufficient information exists in the MIBs used to manage a particular logical entity to infer how physical component information is utilized."

INDEX { entLogicalIndex, entLPPysicalIndex }
::= { entLPMappingTable 1 }

EntLPMappingEntry ::= SEQUENCE {
 entLPPysicalIndex PhysicalIndex
}

entLPPysicalIndex OBJECT-TYPE
SYNTAX PhysicalIndex
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"The value of this object identifies the index value of a particular entPhysicalEntry associated with the indicated entLogicalEntity."
::= { entLPMappingEntry 1 }

-- logical entity/component to alias table
entAliasMappingTable OBJECT-TYPE
SYNTAX SEQUENCE OF EntAliasMappingEntry
MAX-ACCESS not-accessible
STATUS current
DESCRIPTION
 "This table contains zero or more rows, representing
 mappings of logical entity and physical component to
 external MIB identifiers. Each physical port in the system
 may be associated with a mapping to an external identifier,
 which itself is associated with a particular logical
 entity’s naming scope. A ‘wildcard’ mechanism is provided
 to indicate that an identifier is associated with more than
 one logical entity."
::= { entityMapping 2 }

entAliasMappingEntry OBJECT-TYPE
SYNTAX EntAliasMappingEntry
MAX-ACCESS not-accessible
STATUS current
DESCRIPTION
 "Information about a particular physical equipment, logical

entity to external identifier binding. Each logical
entity/physical component pair may be associated with one
alias mapping. The logical entity index may also be used as
a ‘wildcard’ (refer to the entAliasLogicalIndexOrZero object
DESCRIPTION clause for details.)

Note that only entPhysicalIndex values that represent
physical ports (i.e., associated entPhysicalClass value is
‘port(10)’) are permitted to exist in this table.

INDEX { entPhysicalIndex, entAliasLogicalIndexOrZero }
::= { entAliasMappingTable 1 }

EntAliasMappingEntry ::= SEQUENCE {
 entAliasLogicalIndexOrZero Integer32,
 entAliasMappingIdentifier RowPointer
}

entAliasLogicalIndexOrZero OBJECT-TYPE
SYNTAX Integer32 (0..2147483647)
MAX-ACCESS not-accessible
The value of this object identifies the logical entity that defines the naming scope for the associated instance of the ‘entAliasMappingIdentifier’ object.

If this object has a non-zero value, then it identifies the logical entity named by the same value of entLogicalIndex.

If this object has a value of zero, then the mapping between the physical component and the alias identifier for this entAliasMapping entry is associated with all unspecified logical entities. That is, a value of zero (the default mapping) identifies any logical entity that does not have an explicit entry in this table for a particular entPhysicalIndex/entAliasMappingIdentifier pair.

For example, to indicate that a particular interface (e.g., physical component 33) is identified by the same value of ifIndex for all logical entities, the following instance might exist:

\[
\text{entAliasMappingIdentifier.33.0 = ifIndex.5}
\]

In the event an entPhysicalEntry is associated differently for some logical entities, additional entAliasMapping entries may exist, e.g.:

\[
\begin{align*}
\text{entAliasMappingIdentifier.33.0} & = \text{ifIndex.6} \\
\text{entAliasMappingIdentifier.33.4} & = \text{ifIndex.1} \\
\text{entAliasMappingIdentifier.33.5} & = \text{ifIndex.1} \\
\text{entAliasMappingIdentifier.33.10} & = \text{ifIndex.12}
\end{align*}
\]

Note that entries with non-zero entAliasLogicalIndexOrZero index values have precedence over zero-indexed entries. In this example, all logical entities except 4, 5, and 10, associate physical entity 33 with ifIndex.6.

::= \{ entAliasMappingEntry 1 \}

entAliasMappingIdentifier OBJECT-TYPE
SYNTAX RowPointer
MAX-ACCESS read-only
STATUS current
DESCRIPTION "The value of this object identifies a particular conceptual
row associated with the indicated entPhysicalIndex and entLogicalIndex pair.

Because only physical ports are modeled in this table, only entries that represent interfaces or ports are allowed. If an ifEntry exists on behalf of a particular physical port, then this object should identify the associated 'ifEntry'. For repeater ports, the appropriate row in the 'rptrPortGroupTable' should be identified instead.

For example, suppose a physical port was represented by entPhysicalEntry.3, entLogicalEntry.15 existed for a repeater, and entLogicalEntry.22 existed for a bridge. Then there might be two related instances of entAliasMappingIdentifier:

- entAliasMappingIdentifier.3.15 == rptrPortGroupIndex.5.2
- entAliasMappingIdentifier.3.22 == ifIndex.17

It is possible that other mappings (besides interfaces and repeater ports) may be defined in the future, as required.

Bridge ports are identified by examining the Bridge MIB and appropriate ifEntries associated with each 'dot1dBasePort', and are thus not represented in this table."

 ::= { entAliasMappingEntry 2 }

-- physical mapping table

extPhysicalContainsTable OBJECT-TYPE
SYNTAX SEQUENCE OF EntPhysicalContainsEntry
MAX-ACCESS not-accessible
STATUS current

DESCRIPTION
"A table that exposes the container/'containee' relationships between physical entities. This table provides all the information found by constructing the virtual containment tree for a given entPhysicalTable, but in a more direct format.

In the event a physical entity is contained by more than one other physical entity (e.g., double-wide modules), this table should include these additional mappings, which cannot be represented in the entPhysicalTable virtual containment tree."

 ::= { entityMapping 3 }
entPhysicalContainsEntry OBJECT-TYPE
SYNTAX EntPhysicalContainsEntry
MAX-ACCESS not-accessible
STATUS current
DESCRIPTION
"A single container/‘containe’ relationship."
INDEX { entPhysicalIndex, entPhysicalChildIndex }
 ::= { entPhysicalContainsTable 1 }

EntPhysicalContainsEntry ::= SEQUENCE {
 entPhysicalChildIndex PhysicalIndex
}

entPhysicalChildIndex OBJECT-TYPE
SYNTAX PhysicalIndex
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"The value of entPhysicalIndex for the contained physical
entity."
 ::= { entPhysicalContainsEntry 1 }

-- last change time stamp for the whole MIB
entLastChangeTime OBJECT-TYPE
SYNTAX TimeStamp
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"The value of sysUpTime at the time a conceptual row is
created, modified, or deleted in any of these tables:
- entPhysicalTable
- entLogicalTable
- entLPMappingTable
- entAliasMappingTable
- entPhysicalContainsTable"
 ::= { entityGeneral 1 }

-- Entity MIB Trap Definitions
entityMIBTraps OBJECT IDENTIFIER ::= { entityMIB 2 }
entityMIBTrapPrefix OBJECT IDENTIFIER ::= { entityMIBTraps 0 }

entConfigChange NOTIFICATION-TYPE
STATUS current
DESCRIPTION

"An entConfigChange notification is generated when the value of entLastChangeTime changes. It can be utilized by an NMS to trigger logical/physical entity table maintenance polls.

An agent should not generate more than one entConfigChange 'notification-event' in a given time interval (five seconds is the suggested default). A 'notification-event' is the transmission of a single trap or inform PDU to a list of notification destinations.

If additional configuration changes occur within the throttling period, then notification-events for these changes should be suppressed by the agent until the current throttling period expires. At the end of a throttling period, one notification-event should be generated if any configuration changes occurred since the start of the throttling period. In such a case, another throttling period is started right away.

An NMS should periodically check the value of entLastChangeTime to detect any missed entConfigChange notification-events, e.g., due to throttling or transmission loss."

 ::= { entityMIBTrapPrefix 1 }

-- conformance information
entityConformance OBJECT IDENTIFIER ::= { entityMIB 3 }

entityCompliances OBJECT IDENTIFIER ::= { entityConformance 1 }
entityGroups OBJECT IDENTIFIER ::= { entityConformance 2 }

-- compliance statements
entityCompliance MODULE-COMPLIANCE
 STATUS deprecated

DESCRIPTION

 "The compliance statement for SNMP entities that implement version 1 of the Entity MIB."

MODULE -- this module
 MANDATORY-GROUPS {
 entityPhysicalGroup,
 entityLogicalGroup,
 entityMappingGroup,
entity2Compliance MODULE-COMPLIANCE
STATUS deprecated
DESCRIPTION
"The compliance statement for SNMP entities that implement
version 2 of the Entity MIB."
MODULE -- this module
MANDATORY-GROUPS {
 entityPhysicalGroup,
 entityPhysical2Group,
 entityGeneralGroup,
 entityNotificationsGroup
}
GROUP entityLogical2Group
DESCRIPTION
"Implementation of this group is not mandatory for agents
that model all MIB object instances within a single naming
scope."

GROUP entityMappingGroup
DESCRIPTION
"Implementation of the entPhysicalContainsTable is mandatory
for all agents. Implementation of the entLPMappingTable and
entAliasMappingTables are not mandatory for agents that
model all MIB object instances within a single naming scope.

Note that the entAliasMappingTable may be useful for all
agents; however, implementation of the entityLogicalGroup or
entityLogical2Group is required to support this table."

OBJECT entPhysicalSerialNum
MIN-ACCESS not-accessible
DESCRIPTION
"Read and write access is not required for agents that
cannot identify serial number information for physical
entities, and/or cannot provide non-volatile storage for

NMS-assigned serial numbers.

Write access is not required for agents that can identify
serial number information for physical entities, but cannot
provide non-volatile storage for NMS-assigned serial
Write access is not required for physical entities for which the associated value of the `entPhysicalIsFRU` object is equal to 'false(2)'.

OBJECT `entPhysicalAlias`
MIN-ACCESS read-only
DESCRIPTION
"Write access is required only if the associated `entPhysicalClass` value is equal to 'chassis(3)'.'"

OBJECT `entPhysicalAssetID`
MIN-ACCESS not-accessible
DESCRIPTION
"Read and write access is not required for agents that cannot provide non-volatile storage for NMS-assigned asset identifiers.
Write access is not required for physical entities for which the associated value of the `entPhysicalIsFRU` object is equal to 'false(2)'.'"

OBJECT `entPhysicalClass`
SYNTAX INTEGER {
 other(1),
 unknown(2),
 chassis(3),
 backplane(4),
 container(5),
 powerSupply(6),
 fan(7),
 sensor(8),
 module(9),
 port(10),
 stack(11)
}
DESCRIPTION
"Implementation of the 'cpu(12)' enumeration is not required."

::= { entityCompliances 2 }

entity3Compliance MODULE-COMPLIANCE
STATUS current

Romascanu et. al. Standards Track [Page 42]
DESCRIPTION
"The compliance statement for SNMP entities that implement version 3 and 4 (full compliance) of the Entity MIB."

MODULE -- this module
MANDATORY-GROUPS {
 entityPhysicalGroup,
 entityPhysical2Group,
 entityGeneralGroup,
 entityNotificationsGroup
}

GROUP entityLogical2Group
DESCRIPTION
"Implementation of this group is not mandatory for agents that model all MIB object instances within a single naming scope."

GROUP entityMappingGroup
DESCRIPTION
"Implementation of the entPhysicalContainsTable is mandatory for all agents. Implementation of the entLPMappingTable and entAliasMappingTables are not mandatory for agents that model all MIB object instances within a single naming scope.

Note that the entAliasMappingTable may be useful for all agents; however, implementation of the entityLogicalGroup or entityLogical2Group is required to support this table."

OBJECT entPhysicalSerialNum
MIN-ACCESS not-accessible
DESCRIPTION
"Read and write access is not required for agents that cannot identify serial number information for physical entities, and/or cannot provide non-volatile storage for NMS-assigned serial numbers.

Write access is not required for agents that can identify serial number information for physical entities, but cannot provide non-volatile storage for NMS-assigned serial numbers.

Write access is not required for physical entities for which the associated value of the entPhysicalIsFRU object is equal to 'false(2)'."
MIN-ACCESS read-only
DESCRIPTION
"Write access is required only if the associated
entPhysicalClass value is equal to 'chassis(3)'.'"

OBJECT entPhysicalAssetID
MIN-ACCESS not-accessible
DESCRIPTION
"Read and write access is not required for agents that
cannot provide non-volatile storage for NMS-assigned asset
identifiers.
Write access is not required for physical entities for which
the associated value of entPhysicalIsFRU is equal to
'false(2)'.'"
::= { entityCompliances 3 }

entity4CRCompliance MODULE-COMPLIANCE
STATUS current
DESCRIPTION
"The compliance statement for SNMP entities that implement
version 4 of the Entity MIB on devices with constrained
resources.'"
MODULE -- this module
MANDATORY-GROUPS {
 entityPhysicalCRGroup
}
::= { entityCompliances 4 }

-- MIB groupings
entityPhysicalGroup OBJECT-GROUP
OBJECTS {
 entPhysicalDescr,
 entPhysicalVendorType,
 entPhysicalContainedIn,
 entPhysicalClass,
 entPhysicalParentRelPos,
 entPhysicalName
}
STATUS current
DESCRIPTION
"The collection of objects used to represent physical
system components, for which a single agent provides
::= { entityGroups 1 }

entityLogicalGroup OBJECT-GROUP
OBJECTS {
 entLogicalDescr,
 entLogicalType,
 entLogicalCommunity,
 entLogicalTAddress,
 entLogicalTDomain
}
STATUS deprecated
DESCRIPTION
"The collection of objects used to represent the list of logical entities, for which a single agent provides management information."

::= { entityGroups 2 }

entityMappingGroup OBJECT-GROUP
OBJECTS {
 entLPPhysicalIndex,
 entAliasMappingIdentifier,
 entPhysicalChildIndex
}
STATUS current
DESCRIPTION
"The collection of objects used to represent the associations between multiple logical entities, physical components, interfaces, and port identifiers, for which a single agent provides management information."

::= { entityGroups 3 }

entityGeneralGroup OBJECT-GROUP
OBJECTS {
 entLastChangeTime
}
STATUS current
DESCRIPTION
"The collection of objects used to represent general entity information, for which a single agent provides management information."

::= { entityGroups 4 }

entityNotificationsGroup NOTIFICATION-GROUP
NOTIFICATIONS { entConfigChange }
STATUS current
DESCRIPTION
"The collection of notifications used to indicate Entity MIB
data consistency and general status information."
::= { entityGroups 5 }

to entityPhysical2Group OBJECT-GROUP
OBJECTS {
 entPhysicalHardwareRev,
 entPhysicalFirmwareRev,
 entPhysicalSoftwareRev,
 entPhysicalSerialNum,
 entPhysicalMfgName,
 entPhysicalModelName,
 entPhysicalAlias,
 entPhysicalAssetID,
 entPhysicalIsFRU,
 entPhysicalMfgDate,
 entPhysicalUris
}
STATUS current

DESCRIPTION
"The collection of objects used to represent physical
system components, for which a single agent provides
management information. This group augments the objects
contained in the entityPhysicalGroup."
::= { entityGroups 6 }

to entityLogical2Group OBJECT-GROUP
OBJECTS {
 entLogicalDescr,
 entLogicalType,
 entLogicalTAddress,
 entLogicalTDomain,
 entLogicalContextEngineID,
 entLogicalContextName
}
STATUS current
DESCRIPTION
"The collection of objects used to represent the
list of logical entities, for which a single SNMP entity
provides management information."
::= { entityGroups 7 }

to entityPhysicalCRGroup OBJECT-GROUP

OBJECTS {
 entPhysicalClass,
 entPhysicalName,
 entPhysicalUUID
}

STATUS current

DESCRIPTION
"The collection of objects used to represent physical system components for constrained resourced devices, for which a single agent provides management information."

::= { entityGroups 8 }

END

3.2. IANA-ENTITY-MIB

IANA-ENTITY-MIB DEFINITIONS ::= BEGIN

IMPORTS
 MODULE-IDENTITY, mib-2
 FROM SNMPv2-SMI
 TEXTUAL-CONVENTION
 FROM SNMPv2-TC
;

ianaEntityMIB MODULE-IDENTITY
 LAST-UPDATED "201206100000Z" -- June 10, 2011
 ORGANIZATION "IANA"
 CONTACT-INFO " Internet Assigned Numbers Authority

Postal: ICANN
 4676 Admiralty Way, Suite 330
 Marina del Rey, CA 90292

 Tel: +1-310-823-9358
 EMail: iana@iana.org"

DESCRIPTION
"This MIB module

Copyright (C) The IETF Trust (2012).
The initial version of this MIB module was published in RFC yyyy; for full legal notices see the RFC itself. Supplementary information may be available at:
http://www.ietf.org/copyrights/ianamib.html"
IANAPhysicalClass ::= TEXTUAL-CONVENTION
STATUS current
DESCRIPTION
"An enumerated value which provides an indication of the
general hardware type of a particular physical entity.
There are no restrictions as to the number of
entPhysicalEntries of each entPhysicalClass, which must be
instantiated by an agent.

The enumeration 'other' is applicable if the physical entity
class is known, but does not match any of the supported
values.

The enumeration 'unknown' is applicable if the physical
entity class is unknown to the agent.

The enumeration 'chassis' is applicable if the physical
entity class is an overall container for networking
equipment. Any class of physical entity, except a stack,
may be contained within a chassis; and a chassis may only
be contained within a stack.

The enumeration 'backplane' is applicable if the physical
entity class is some sort of device for aggregating and
forwarding networking traffic, such as a shared backplane in
a modular ethernet switch. Note that an agent may model a
backplane as a single physical entity, which is actually
implemented as multiple discrete physical components (within
a chassis or stack).

The enumeration 'container' is applicable if the physical
entity class is capable of containing one or more removable
physical entities, possibly of different types. For
example, each (empty or full) slot in a chassis will be
modeled as a container. Note that all removable physical
entities should be modeled within a container entity, such
as field-replaceable modules, fans, or power supplies. Note that all known containers should be modeled by the agent, including empty containers.

The enumeration ‘powerSupply’ is applicable if the physical entity class is a power-supplying component.

The enumeration ‘fan’ is applicable if the physical entity class is a fan or other heat-reduction component.

The enumeration ‘sensor’ is applicable if the physical entity class is some sort of sensor, such as a temperature sensor within a router chassis.

The enumeration ‘module’ is applicable if the physical entity class is some sort of self-contained sub-system. If the enumeration ‘module’ is removable, then it should be modeled within a container entity, otherwise it should be modeled directly within another physical entity (e.g., a chassis or another module).

The enumeration ‘port’ is applicable if the physical entity class is some sort of networking port, capable of receiving and/or transmitting networking traffic.

The enumeration ‘stack’ is applicable if the physical entity class is some sort of super-container (possibly virtual), intended to group together multiple chassis entities. A stack may be realized by a ‘virtual’ cable, a real interconnect cable, attached to multiple chassis, or may in fact be comprised of multiple interconnect cables. A stack should not be modeled within any other physical entities, but a stack may be contained within another stack. Only chassis entities should be contained within a stack.

The enumeration ‘cpu’ is applicable if the physical entity class is some sort of central processing unit.

The enumeration ‘energyObject’ is applicable if the physical entity is some sort of an energy object i.e. a piece of equipment that is part of or attached to a communications network that is monitored, controlled, or aids in the management of another device for Energy Management.

The enumeration ‘battery’ is applicable if the physical entity class is some sort of an energy battery device.

SYNTAX INTEGER {
other(1),
unknown(2),
chassis(3),
backplane(4),
container(5), -- e.g., chassis slot or daughter-card holder
powerSupply(6),
fan(7),
sensor(8),
module(9), -- e.g., plug-in card or daughter-card
port(10),
stack(11), -- e.g., stack of multiple chassis entities
cpu(12),
ergyObject(13),
battery (14)
}

END

3.3. UUID-TC-MIB

UUID-TC-MIB DEFINITIONS ::= BEGIN

IMPORTS
MODULE-IDENTITY, mib-2
FROM SNMPv2-SMI
TEXTUAL-CONVENTION
FROM SNMPv2-TC ;

uuidTCMIB MODULE-IDENTITY
LAST-UPDATED "201210090000Z" -- October 9, 2011
ORGANIZATION "IETF Energy Management Working Group"
CONTACT-INFO "
WG E-mail: eman@ietf.org
Mailing list subscription info:
 http://www.ietf.org/mailman/listinfo/eman

Dan Romascanu
AVAYA
Park Atidim, Bldg. #3
Tel Aviv, 61581
Israel
Phone: +972-3-6458414
Email: dromasca@avaya.com

Juergen Quittek
NEC Europe Ltd.
Network Research Division

Romascanu et. al. Standards Track [Page 50]
DESCRIPTION
"This MIB module

Copyright (C) The IETF Trust (2012).
The initial version of this MIB module was published in
RFC yyyy; for full legal notices see the RFC itself.
Supplementary information may be available at:
http://www.ietf.org/copyrights/ianamib.html"

REVISION "201210090000Z" -- October 9, 2012
DESCRIPTION "Initial version of this MIB as published in
RFC yyyy."

::= { mib-2 xxx }

-- RFC Editor, please replace xxx with the IANA allocation for this
-- MIB module and yyyy with the number of the approved RFC

-- Textual Conventions

UUID ::= TEXTUAL-CONVENTION
DISPLAY-HINT "4x-2x-2x-1x1x-6x"
STATUS current
DESCRIPTION "Universal Unique Identifier information. The syntax must
conform to RFC 4122, section 4.1."

SYNTAX OCTET STRING (SIZE (16))

UUIDorZero ::= TEXTUAL-CONVENTION
DISPLAY-HINT "4x-2x-2x-1x1x-6x"
STATUS current
DESCRIPTION "Universal Unique Identifier information. The syntax

must conform to RFC 4122, section 4.1.

The semantics of the value zero-length OCTET STRING are object-specific and must therefore be defined as part of the description of any object that uses this syntax.

SYNTAX OCTET STRING (SIZE (0|16))

END

4. Usage Examples

The following sections iterate the instance values for two example networking devices. These examples are kept simple to make them more understandable. Auxiliary components such as fans, sensors, empty slots, and sub-modules are not shown, but might be modeled in real implementations.

4.1. Router/Bridge

The first example is a router containing two slots. Each slot contains a 3 port router/bridge module. Each port is represented in the ifTable. There are two logical instances of OSPF running and two logical bridges:

Physical entities -- entPhysicalTable:

1 Field-replaceable physical chassis:
 entPhysicalDescr.1 == 'Acme Chassis Model 100'
 entPhysicalVendorType.1 == acmeProducts.chassisTypes.1
 entPhysicalContainedIn.1 == 0
 entPhysicalClass.1 == chassis(3)
 entPhysicalParentRelPos.1 == 0
 entPhysicalName.1 == '100-A'
 entPhysicalHardwareRev.1 == 'A(1.00.02)'
 entPhysicalSoftwareRev.1 == ''
 entPhysicalFirmwareRev.1 == ''
 entPhysicalSerialNum.1 == 'C100076544'
 entPhysicalMfgName.1 == 'Acme'
 entPhysicalModelName.1 == '100'
 entPhysicalAlias.1 == 'cl-SJ17-3-006:rack1:rtr-U3'
 entPhysicalAssetID.1 == '0007372293'
 entPhysicalIsFRU.1 == true(1)
 entPhysicalMfgDate.1 == '2002-5-26,13:30:30.0,-4:0'
 entPhysicalUris.1 == 'URN:CLEI:CNME120ARA'

2 slots within the chassis:
 entPhysicalDescr.2 == 'Acme Chassis Slot Type AA'
 entPhysicalVendorType.2 == acmeProducts.slotTypes.1
 entPhysicalContainedIn.2 == 1
entPhysicalClass.2 == container(5)
entPhysicalParentRelPos.2 == 1
entPhysicalName.2 == 'S1'
entPhysicalHardwareRev.2 == 'B(1.00.01)'
entPhysicalSoftwareRev.2 == ''
entPhysicalFirmwareRev.2 == ''
entPhysicalSerialNum.2 == ''
entPhysicalMfgName.2 == 'Acme'
entPhysicalModelName.2 == 'AA'
entPhysicalAlias.2 == ''
entPhysicalAssetID.2 == ''
entPhysicalIsFRU.2 == false(2)
entPhysicalMfgDate.2 == '2002-7-26,12:22:12.0,-4:0'
entPhysicalUris.2 == 'URN:CLEI:CNME123ARA'

entPhysicalDescr.3 == 'Acme Chassis Slot Type AA'
entPhysicalVendorType.3 == acmeProducts.slotTypes.1
entPhysicalContainedIn.3 == 1
entPhysicalClass.3 == container(5)
entPhysicalParentRelPos.3 == 2
entPhysicalName.3 == 'S2'
entPhysicalHardwareRev.3 == '1.00.07'
entPhysicalSoftwareRev.3 == ''
entPhysicalFirmwareRev.3 == ''
entPhysicalSerialNum.3 == ''
entPhysicalMfgName.3 == 'Acme'
entPhysicalModelName.3 == 'AA'
entPhysicalAlias.3 == ''
entPhysicalAssetID.3 == ''
entPhysicalIsFRU.3 == false(2)
entPhysicalMfgDate.3 == '2002-7-26,12:12:12.0,-4:0'
entPhysicalUris.3 == 'URN:CLEI:CNME123ARA'

2 Field-replaceable modules:
Slot 1 contains a module with 3 ports:
entPhysicalDescr.4 == 'Acme Router-100'
entPhysicalVendorType.4 == acmeProducts.moduleTypes.14
entPhysicalContainedIn.4 == 2
entPhysicalClass.4 == module(9)
entPhysicalParentRelPos.4 == 1
entPhysicalName.4 == 'M1'
entPhysicalHardwareRev.4 == '1.00.07'
entPhysicalSoftwareRev.4 == '1.4.1'
entPhysicalFirmwareRev.4 == 'A(1.1)'
entPhysicalSerialNum.4 == 'C100087363'
entPhysicalMfgName.4 == 'Acme'
entPhysicalModelName.4 == 'R100-FE'
entPhysicalAlias.4 == 'rtr-U3:m1: SJ17-3-eng'
```
entPhysicalAssetID.4 == '0007372462'
entPhysicalIsFRU.4 == true(1)
entPhysicalMfgDate.4 == '2003-7-18,13:30:30.0,-4:0'
entPhysicalUris.4 == 'URN:CLEI:CNRU123CAA'

entPhysicalDescr.5 == 'Acme Ethernet-100 Port'
entPhysicalVendorType.5 == acmeProducts.portTypes.2
entPhysicalContainedIn.5 == 4
entPhysicalClass.5 == port(10)
entPhysicalParentRelPos.5 == 1
entPhysicalName.5 == 'P1'
entPhysicalHardwareRev.5 == 'G(1.02)'
entPhysicalSoftwareRev.5 == ''
entPhysicalFirmwareRev.5 == '1.1'
entPhysicalSerialNum.5 == ''
entPhysicalMfgName.5 == 'Acme'
entPhysicalModelName.5 == 'FE-100'
entPhysicalAlias.5 == ''
entPhysicalAssetID.5 == ''
entPhysicalIsFRU.5 == false(2)
entPhysicalMfgDate.5 == '2003-7-18,14:20:22.0,-4:0'
entPhysicalUris.5 == 'URN:CLEI:CNMES23ARA'

entPhysicalDescr.6 == 'Acme Ethernet-100 Port'
entPhysicalVendorType.6 == acmeProducts.portTypes.2
entPhysicalContainedIn.6 == 4
entPhysicalClass.6 == port(10)
entPhysicalParentRelPos.6 == 2
entPhysicalName.6 == 'P2'
entPhysicalHardwareRev.6 == 'G(1.02)'
entPhysicalSoftwareRev.6 == ''
entPhysicalFirmwareRev.6 == '1.1'
entPhysicalSerialNum.6 == ''
entPhysicalMfgName.6 == 'Acme'
entPhysicalModelName.6 == 'FE-100'
entPhysicalAlias.6 == ''
entPhysicalAssetID.6 == ''
entPhysicalIsFRU.6 == false(2)
entPhysicalMfgDate.6 == '2003-7-19,10:15:15.0,-4:0'
entPhysicalUris.6 == 'URN:CLEI:CNMES23ARA'

entPhysicalDescr.7 == 'Acme Router-100 FDDI-Port'
entPhysicalVendorType.7 == acmeProducts.portTypes.3
entPhysicalContainedIn.7 == 4
entPhysicalClass.7 == port(10)
entPhysicalParentRelPos.7 == 3
entPhysicalName.7 == 'P3'
entPhysicalHardwareRev.7 == 'B(1.03)'
```
entPhysicalSoftwareRev.7 == '2.5.1'
entPhysicalFirmwareRev.7 == '2.5F'
entPhysicalSerialNum.7 == ''
entPhysicalMfgName.7 == 'Acme'
entPhysicalModelName.7 == 'FDDI-100'
entPhysicalAlias.7 == ''
entPhysicalAssetID.7 == ''
entPhysicalIsFRU.7 == false(2)

Slot 2 contains another 3-port module:
entPhysicalDescr.8 == 'Acme Router-100 Comm Module'
entPhysicalVendorType.8 == acmeProducts.moduleTypes.15
entPhysicalContainedIn.8 == 3
entPhysicalClass.8 == module(9)
entPhysicalParentRelPos.8 == 1
entPhysicalName.8 == 'M2'
entPhysicalHardwareRev.8 == '2.01.00'
entPhysicalSoftwareRev.8 == '3.0.7'
entPhysicalFirmwareRev.8 == 'A(1.2)'
entPhysicalSerialNum.8 == 'C100098732'
entPhysicalMfgName.8 == 'Acme'
entPhysicalModelName.8 == 'C100'
entPhysicalAlias.8 == 'rtr-U3:m2:SJ17-2-eng'
entPhysicalAssetID.8 == '0007373982'
entPhysicalIsFRU.8 == true(1)
entPhysicalMfgDate.8 == '2002-5-26,13:30:15.0,-4:0'
entPhysicalUris.8 == 'URN:CLEI:CNRT321MAA'

entPhysicalDescr.9 == 'Acme Fddi-100 Port'
entPhysicalVendorType.9 == acmeProducts.portTypes.5
entPhysicalClass.9 == port(10)
entPhysicalParentRelPos.9 == 1
entPhysicalName.9 == 'FDDI Primary'
entPhysicalHardwareRev.9 == 'CC(1.07)'
entPhysicalSoftwareRev.9 == '2.0.34'
entPhysicalFirmwareRev.9 == '1.1'
entPhysicalSerialNum.9 == ''
entPhysicalMfgName.9 == 'Acme'
entPhysicalModelName.9 == 'FDDI-100'
entPhysicalAlias.9 == ''
entPhysicalAssetID.9 == ''
entPhysicalIsFRU.9 == false(2)

entPhysicalDescr.10 == 'Acme Ethernet-100 Port'
entPhysicalVendorType.10 == acmeProducts.portTypes.2
entPhysicalClass.10 == port(10)
Logical entities -- entLogicalTable; no SNMPv3 support
2 OSPF instances:

entLogicalDescr.1 == 'Acme OSPF v1.1'
entLogicalType.1 == ospf
entLogicalCommunity.1 == 'public-ospf1'
entLogicalTAddress.1 == 192.0.2.1:161
entLogicalTDomain.1 == snmpUDPDomain
entLogicalContextEngineID.1 == ''
entLogicalContextName.1 == ''

entLogicalDescr.2 == 'Acme OSPF v1.1'
entLogicalType.2 == ospf
entLogicalCommunity.2 == 'public-ospf2'
entLogicalTAddress.2 == 192.0.2.1:161
entLogicalTDomain.2 == snmpUDPDomain
entLogicalContextEngineID.2 == ''
entLogicalContextName.2 == ""

2 logical bridges:
entLogicalDescr.3 == 'Acme Bridge v2.1.1'
entLogicalType.3 == dot1dBridge
entLogicalCommunity.3 == 'public-bridgel'
entLogicalTAddress.3 == 192.0.2.1:161
entLogicalTDomain.3 == snmpUDPDomain
entLogicalContextEngineID.3 == ""
entLogicalContextName.3 == ""

entLogicalDescr.4 == 'Acme Bridge v2.1.1'
entLogicalType.4 == dot1dBridge
entLogicalCommunity.4 == 'public-bridgeln2'
entLogicalTAddress.4 == 192.0.2.1:161
entLogicalTDomain.4 == snmpUDPDomain
entLogicalContextEngineID.4 == ""
entLogicalContextName.4 == ""

Logical to Physical Mappings:
1st OSPF instance: uses module 1-port 1
entLPPhysicalIndex.1.5 == 5

2nd OSPF instance: uses module 2-port 1
entLPPhysicalIndex.2.9 == 9

1st bridge group: uses module 1, all ports
[ed. -- Note that these mappings are included in the table because another logical entity (1st OSPF) utilizes one of the ports. If this were not the case, then a single mapping to the module (e.g., entLPPhysicalIndex.3.4) would be present instead.]
entLPPhysicalIndex.3.5 == 5
entLPPhysicalIndex.3.6 == 6
entLPPhysicalIndex.3.7 == 7

2nd bridge group: uses module 2, all ports
entLPPhysicalIndex.4.9 == 9
entLPPhysicalIndex.4.10 == 10
entLPPhysicalIndex.4.11 == 11

Physical to Logical to MIB Alias Mappings -- entAliasMappingTable:
Example 1: ifIndex values are global to all logical entities
entAliasMappingIdentifier.5.0 == ifIndex.1
entAliasMappingIdentifier.6.0 == ifIndex.2
entAliasMappingIdentifier.7.0 == ifIndex.3
entAliasMappingIdentifier.9.0 == ifIndex.4
entAliasMappingIdentifier.10.0 == ifIndex.5
entAliasMappingIdentifier.11.0 == ifIndex.6

Example 2: ifIndex values are not shared by all logical entities;
(Bridge-1 uses ifIndex values 101 - 103 and Bridge-2 uses
ifIndex values 204-206.)
entAliasMappingIdentifier.5.0 == ifIndex.1
entAliasMappingIdentifier.5.3 == ifIndex.101
entAliasMappingIdentifier.6.0 == ifIndex.2
entAliasMappingIdentifier.6.3 == ifIndex.102
entAliasMappingIdentifier.7.0 == ifIndex.3
entAliasMappingIdentifier.7.3 == ifIndex.103
entAliasMappingIdentifier.9.0 == ifIndex.4
entAliasMappingIdentifier.9.4 == ifIndex.204
entAliasMappingIdentifier.10.0 == ifIndex.5
entAliasMappingIdentifier.10.4 == ifIndex.205
entAliasMappingIdentifier.11.0 == ifIndex.6
entAliasMappingIdentifier.11.4 == ifIndex.206

Physical Containment Tree -- entPhysicalContainsTable
chassis has two containers:
 entPhysicalChildIndex.1.2 == 2
 entPhysicalChildIndex.1.3 == 3

container 1 has a module:
 entPhysicalChildIndex.2.4 == 4

container 2 has a module:
 entPhysicalChildIndex.3.8 == 8

module 1 has 3 ports:
 entPhysicalChildIndex.4.5 == 5
 entPhysicalChildIndex.4.6 == 6
 entPhysicalChildIndex.4.7 == 7

module 2 has 3 ports:
 entPhysicalChildIndex.8.9 == 9
 entPhysicalChildIndex.8.10 == 10
 entPhysicalChildIndex.8.11 == 11

4.2. Repeaters

The second example is a 3-slot Hub with 2 backplane ethernet
segments. Slot three is empty, and the remaining slots contain
ethernet repeater modules.

Note that this example assumes an older Repeater MIB implementation,
(RFC 1516 [RFC1516]) rather than the new Repeater MIB (RFC 2108)
The new version contains an object called 'rptrPortRptrId', which should be used to identify repeater port groupings, rather than using community strings or contexts.

Physical entities -- entPhysicalTable:

1 Field-replaceable physical chassis:
 entPhysicalDescr.1 == 'Acme Chassis Model 110'
 entPhysicalVendorType.1 == acmeProducts.chassisTypes.2
 entPhysicalContainedIn.1 == 0
 entPhysicalClass.1 == chassis(3)
 entPhysicalParentRelPos.1 == 0
 entPhysicalName.1 == '110-B'
 entPhysicalHardwareRev.1 == 'A(1.02.00)'
 entPhysicalSoftwareRev.1 == ''
 entPhysicalFirmwareRev.1 == ''
 entPhysicalSerialNum.1 == 'C100079294'
 entPhysicalMfgName.1 == 'Acme'
 entPhysicalModelName.1 == '110'
 entPhysicalAlias.1 == 'bldg09:floor1:rptr18:0067eea0229f'
 entPhysicalAssetID.1 == '0007386327'
 entPhysicalIsFRU.1 == true(1)

2 Chassis Ethernet Backplanes:
 entPhysicalDescr.2 == 'Acme Ethernet Backplane Type A'
 entPhysicalVendorType.2 == acmeProducts.backplaneTypes.1
 entPhysicalContainedIn.2 == 1
 entPhysicalClass.2 == backplane(4)
 entPhysicalParentRelPos.2 == 1
 entPhysicalName.2 == 'B1'
 entPhysicalHardwareRev.2 == 'A(2.04.01)'
 entPhysicalSoftwareRev.2 == ''
 entPhysicalFirmwareRev.2 == ''
 entPhysicalSerialNum.2 == ''
 entPhysicalMfgName.2 == 'Acme'
 entPhysicalModelName.2 == 'BK-A'
 entPhysicalAlias.2 == ''
 entPhysicalAssetID.2 == ''
 entPhysicalIsFRU.2 == false(2)

 entPhysicalDescr.3 == 'Acme Ethernet Backplane Type A'
 entPhysicalVendorType.3 == acmeProducts.backplaneTypes.1
 entPhysicalContainedIn.3 == 1
 entPhysicalClass.3 == backplane(4)
 entPhysicalParentRelPos.3 == 2
 entPhysicalName.3 == 'B2'
 entPhysicalHardwareRev.3 == 'A(2.04.01)'
 entPhysicalSoftwareRev.3 == ''
 entPhysicalFirmwareRev.3 == ''
entPhysicalSerialNum.3 == ''
entPhysicalMfgName.3 == 'Acme'
entPhysicalModelName.3 == 'BK-A'
entPhysicalAlias.3 == ''
entPhysicalAssetID.3 == ''
entPhysicalIsFRU.3 == false(2)

3 slots within the chassis:
entPhysicalDescr.4 == 'Acme Hub Slot Type RB'
entPhysicalVendorType.4 == acmeProducts.slotTypes.5
entPhysicalContainedIn.4 == 1
entPhysicalClass.4 == container(5)
entPhysicalParentRelPos.4 == 1
entPhysicalName.4 == 'Slot 1'
entPhysicalHardwareRev.4 == 'B(1.00.03)'
entPhysicalSoftwareRev.4 == ''
entPhysicalFirmwareRev.4 == ''
entPhysicalSerialNum.4 == ''
entPhysicalMfgName.4 == 'Acme'
entPhysicalModelName.4 == 'RB'
entPhysicalAlias.4 == ''
entPhysicalAssetID.4 == ''
entPhysicalIsFRU.4 == false(2)

entPhysicalDescr.5 == 'Acme Hub Slot Type RB'
entPhysicalVendorType.5 == acmeProducts.slotTypes.5
entPhysicalContainedIn.5 == 1
entPhysicalClass.5 == container(5)
entPhysicalParentRelPos.5 == 2
entPhysicalName.5 == 'Slot 2'
entPhysicalHardwareRev.5 == 'B(1.00.03)'
entPhysicalSoftwareRev.5 == ''
entPhysicalFirmwareRev.5 == ''
entPhysicalSerialNum.5 == ''
entPhysicalMfgName.5 == 'Acme'
entPhysicalModelName.5 == 'RB'
entPhysicalAlias.5 == ''
entPhysicalAssetID.5 == ''
entPhysicalIsFRU.5 == false(2)

entPhysicalDescr.6 == 'Acme Hub Slot Type RB'
entPhysicalVendorType.6 == acmeProducts.slotTypes.5
entPhysicalContainedIn.6 == 1
entPhysicalClass.6 == container(5)
entPhysicalParentRelPos.6 == 3
entPhysicalName.6 == 'Slot 3'
entPhysicalHardwareRev.6 == 'B(1.00.03)'
entPhysicalSoftwareRev.6 == ''
Slot 1 contains a plug-in module with 4 10-BaseT ports:

```c
entPhysicalDescr.7 == 'Acme 10Base-T Module 114'
entPhysicalVendorType.7 == acmeProducts.moduleTypes.32
entPhysicalContainedIn.7 == 4
entPhysicalParentRelPos.7 == 1
entPhysicalName.7 == 'M1'
entPhysicalHardwareRev.7 == 'A(1.02.01)'
entPhysicalSoftwareRev.7 == '1.7.2'
entPhysicalFirmwareRev.7 == 'A(1.5)'
entPhysicalSerialNum.7 == 'C100096244'
entPhysicalMfgName.7 == 'Acme'
entPhysicalModelName.7 == '114'
entPhysicalAlias.7 == 'bldg09:floor1:eng'
entPhysicalAssetID.7 == '0007962951'
entPhysicalIsFRU.7 == true(1)
entPhysicalDescr.8 == 'Acme 10Base-T Port RB'
entPhysicalVendorType.8 == acmeProducts.portTypes.10
entPhysicalContainedIn.8 == 7
entPhysicalClass.8 == port(10)
entPhysicalParentRelPos.8 == 1
entPhysicalName.8 == 'Ethernet-A'
entPhysicalHardwareRev.8 == 'A(1.04F)'
entPhysicalSoftwareRev.8 == ''
entPhysicalFirmwareRev.8 == '1.4'
entPhysicalSerialNum.8 == ''
entPhysicalMfgName.8 == 'Acme'
entPhysicalModelName.8 == 'RB'
entPhysicalAlias.8 == ''
entPhysicalAssetID.8 == ''
entPhysicalIsFRU.8 == false(2)
entPhysicalDescr.9 == 'Acme 10Base-T Port RB'
entPhysicalVendorType.9 == acmeProducts.portTypes.10
entPhysicalContainedIn.9 == 7
entPhysicalClass.9 == port(10)
entPhysicalParentRelPos.9 == 2
entPhysicalName.9 == 'Ethernet-B'
entPhysicalHardwareRev.9 == 'A(1.04F)'
```
Slot 2 contains another ethernet module with 2 ports.

entPhysicalDescr.12 == 'Acme 10Base-T Module Model 4'
entPhysicalVendorType.12 == acmeProducts.moduleTypes.30
entPhysicalContainedIn.12 == 5
entPhysicalClass.12 == module(9)
entPhysicalParentRelPos.12 == 1
entPhysicalName.12 == 'M2'
entPhysicalHardwareRev.12 == 'A(1.01.07)'
entPhysicalSoftwareRev.12 == '1.8.4'
entPhysicalFirmwareRev.12 == 'A(1.8)'
entPhysicalSerialNum.12 == 'C100102384'
entPhysicalMfgName.12 == 'Acme'
entPhysicalModelName.12 == '4'
entPhysicalAlias.12 == 'bldg09:floor1:devtest'
entPhysicalAssetID.12 == '0007968462'
entPhysicalIsFRU.12 == true(1)

entPhysicalDescr.12 == 'Acme 802.3 AUI Port'
entPhysicalVendorType.13 == acmeProducts.portTypes.11
entPhysicalContainedIn.13 == 12
entPhysicalClass.13 == port(10)
entPhysicalParentRelPos.13 == 1
entPhysicalName.13 == 'AUI'
entPhysicalHardwareRev.13 == 'A(1.06F)'
entPhysicalSoftwareRev.13 == ''
entPhysicalFirmwareRev.13 == '1.5'
entPhysicalSerialNum.13 == ''
entPhysicalMfgName.13 == 'Acme'
entPhysicalModelName.13 == ''
entPhysicalAlias.13 == ''
entPhysicalAssetID.13 == ''
entPhysicalIsFRU.13 == false(2)

entPhysicalDescr.14 == 'Acme 10Base-T Port RD'
entPhysicalVendorType.14 == acmeProducts.portTypes.14
entPhysicalContainedIn.14 == 12
entPhysicalClass.14 == port(10)
entPhysicalParentRelPos.14 == 2
entPhysicalName.14 == 'E2'
entPhysicalHardwareRev.14 == 'B(1.01.02)'
entPhysicalSoftwareRev.14 == ''
entPhysicalFirmwareRev.14 == '2.1'
entPhysicalSerialNum.14 == ''
entPhysicalMfgName.14 == 'Acme'
entPhysicalModelName.14 == ''
entPhysicalAlias.14 == ''
entPhysicalAssetID.14 == ''
entPhysicalIsFRU.14 == false(2)

Logical entities -- entLogicalTable; with SNMPv3 support
Repeater 1--comprised of any ports attached to backplane 1
entLogicalDescr.1 == 'Acme repeater v3.1'
entLogicalType.1 == snmpDot3RptrMgt
entLogicalCommunity.1 == 'public-repeater1'
entLogicalTAddress.1 == 192.0.2.1:161
entLogicalTDomain.1 == snmpUDPDomain
entLogicalContextEngineID.1 == '80000777017c7d7e7f'H
entLogicalContextName.1 == 'repeater1'

Repeater 2--comprised of any ports attached to backplane 2:
entLogicalDescr.2 == 'Acme repeater v3.1'
entLogicalType.2 == snmpDot3RptrMgt
entLogicalCommunity.2 == 'public-repeater2'
entLogicalTAddress.2 == 192.0.2.1:161
entLogicalTDomain.2 == snmpUDPDomain
entLogicalContextEngineID.2 == '80000777017c7d7e7f'H
entLogicalContextName.2 == 'repeater2'

Logical to Physical Mappings -- entLPMappingTable:

repeater1 uses backplane 1, slot 1-ports 1 & 2, slot 2-port 1
[ed. -- Note that a mapping to the module is not included,
because this example represents a port-switchable hub.
Even though all ports on the module could belong to the
same repeater as a matter of configuration, the LP port
mappings should not be replaced dynamically with a single
mapping for the module (e.g., entLPPhysicalIndex.1.7).
If all ports on the module shared a single backplane connection,
then a single mapping for the module would be more appropriate.]

entLPPhysicalIndex.1.2 == 2
entLPPhysicalIndex.1.8 == 8
entLPPhysicalIndex.1.9 == 9
entLPPhysicalIndex.1.13 == 13

repeater2 uses backplane 2, slot 1-ports 3 & 4, slot 2-port 2
entLPPhysicalIndex.2.3 == 3
entLPPhysicalIndex.2.10 == 10
entLPPhysicalIndex.2.11 == 11
entLPPhysicalIndex.2.14 == 14

Physical to Logical to MIB Alias Mappings -- entAliasMappingTable:

Repeater Port Identifier values are shared by both repeaters:
entAliasMappingIdentifier.8.0 == rptrPortGroupIndex.1.1
entAliasMappingIdentifier.9.0 == rptrPortGroupIndex.1.2
entAliasMappingIdentifier.10.0 == rptrPortGroupIndex.1.3
entAliasMappingIdentifier.11.0 == rptrPortGroupIndex.1.4
entAliasMappingIdentifier.13.0 == rptrPortGroupIndex.2.1
entAliasMappingIdentifier.14.0 == rptrPortGroupIndex.2.2

Physical Containment Tree -- entPhysicalContainsTable
chassis has two backplanes and three containers:
entPhysicalChildIndex.1.2 == 2
5. Security Considerations

There are a number of management objects defined in this MIB that have a MAX-ACCESS clause of read-write and/or read-create. Such objects may be considered sensitive or vulnerable in some network environments. The support for SET operations in a non-secure environment without proper protection can have a negative effect on network operations.

There are a number of managed objects in this MIB that may contain sensitive information. These are:

- entPhysicalDescr
- entPhysicalVendorType
- entPhysicalHardwareRev
- entPhysicalFirmwareRev
- entPhysicalSoftwareRev
- entPhysicalSerialNum
- entPhysicalMfgName
- entPhysicalModelName

These objects expose information about the physical entities within a managed system, which may be used to identify the vendor, model, and version information of each system component.

entPhysicalAssetID
This object can allow asset identifiers for various system components to be exposed, in the event this MIB object is actually configured by an NMS application.

entLogicalDescr
entLogicalType

These objects expose the type of logical entities present in the managed system.

entLogicalCommunity

This object exposes community names associated with particular logical entities within the system.

entLogicalTAddress
entLogicalTDomain

These objects expose network addresses that can be used to communicate with an SNMP agent on behalf of particular logical entities within the system.

entLogicalContextEngineID
entLogicalContextName

These objects identify the authoritative SNMP engine that contains information on behalf of particular logical entities within the system.

It is thus important to control even GET access to these objects and possibly to even encrypt the values of these objects when sending them over the network via SNMP. Not all versions of SNMP provide features for such a secure environment.

SNMPv1 by itself is not a secure environment. Even if the network itself is secure (for example by using IPSec), even then, there is no control as to who on the secure network is allowed to access and GET/SET (read/change/create/delete) the objects in this MIB.

It is recommended that the implementers consider the security features as provided by the SNMPv3 framework. Specifically, the use of the User-based Security Model RFC 3414 [RFC3414] and the View-based Access Control Model RFC 3415 [RFC3415] is recommended.

It is then a customer/user responsibility to ensure that the SNMP entity giving access to an instance of this MIB, is properly configured to give access to the objects only to those principals (users) that have legitimate rights to indeed GET or SET...
(change/create/delete) them.

6. IANA Considerations

This document defines first version of the IANA-maintained IANA-ENTITY-MIB module, which will allow for new physical classes to be added to the enumeration in IANAPhysicalClass. An Expert Review, as defined in RFC 5226 [RFC5226], is REQUIRED, for each modification.

The MIB module in this document uses the following IANA-assigned OBJECT IDENTIFIER values recorded in the SMI Numbers registry:

<table>
<thead>
<tr>
<th>Descriptor</th>
<th>OBJECT IDENTIFIER value</th>
</tr>
</thead>
<tbody>
<tr>
<td>entityMIB</td>
<td>{ mib-2 47 }</td>
</tr>
</tbody>
</table>

7. Acknowledgements

The first three versions of RFCs on the ENTITY MIB were authored by A. Bierman and K. McCloghrie. The authors would like thank A. Bierman and K. McCloghrie for the earlier versions of ENTITY MIB.

The motivation for the extension to RFC 4133 stems from the requirements of the EMAN WG at IETF.

The authors also thank Juergen Schoenwaelder for his review and comments on this draft.

8. References

8.1. Normative References

8.2. Informative References

Authors’ Addresses

Andy Bierman
Yumaworks

Email: andy@yumaworks.com

Dan Romascanu
AVAYA
Park Atidim, Bldg. #3
Tel Aviv, 61581
Israel

Phone: +972-3-6458414
Email: dromasca@avaya.com

Juergen Quittek
NEC Europe Ltd.
Network Research Division
Kurfuersten-Anlage 36
Heidelberg 69115
DE

Phone: +49 6221 4342-115
Email: quittek@neclab.eu

Mouli Chandramouli
Cisco Systems, Inc.
Sarjapur Outer Ring Road
Bangalore 560103
IN

Phone: +91 80 4429 2409
Email: moulchan@cisco.com
Survey of Possibilities for the Automated Configuration of Large IP Networks
draft-ietf-opsawg-automated-network-configuration-05

Abstract

This memo discusses the steps required to bring a large number of devices into service in IP networks in an automated fashion. The goal of this document is to list known solutions where they exist, to point out approaches proven to be problematic, and to identify gaps that require further specifications.

Status of this Memo

This Internet-Draft is submitted in full conformance with the provisions of BCP 78 and BCP 79.

Internet-Drafts are working documents of the Internet Engineering Task Force (IETF). Note that other groups may also distribute working documents as Internet-Drafts. The list of current Internet-Drafts is at http://datatracker.ietf.org/drafts/current/.

Internet-Drafts are draft documents valid for a maximum of six months and may be updated, replaced, or obsoleted by other documents at any time. It is inappropriate to use Internet-Drafts as reference material or to cite them other than as "work in progress."

This Internet-Draft will expire on July 27, 2013.

Copyright Notice

Copyright (c) 2013 IETF Trust and the persons identified as the document authors. All rights reserved.

This document is subject to BCP 78 and the IETF Trust’s Legal Provisions Relating to IETF Documents
1. Introduction

Many large IP networks are being deployed that entail the installation of tens of thousands of new network devices. To keep costs down, it is desirable to automate the establishment of such networks to the maximum extent possible. This naturally raises the question how new devices can pick up the configuration information they need to operate properly in an automated fashion. The goal of this document is to list known solutions where they exist, to point out approaches proven to be problematic, and to identify gaps that require further specifications.

The document primarily targets (a) network operators (in the generic sense) who are facing the challenge to roll out a large number of new devices and think about how to implement things properly, (b) network equipment vendors who like to add features to their products that make the roll out of lots of new devices simpler for their customers, and (c) people active in the IETF by identifying gaps where further standards may be useful to develop. The aim of the document is to provide guidance to actors who have not already experienced success in this area by informing about the trade-offs of different approaches.

A certain basic amount of configuration information must be pre-configured by the vendor or network operator before the devices are physically deployed. This pre-provisioned configuration can either be stored directly on the device itself or it can be provided to the device during the deployment operation via pluggable memory cards or near field communication technologies. Further device configuration information is best delivered after startup, to ensure that it is consistent with the physical deployment and the desired network configuration.

One example where automated configuration is important are new service provider networks. 3GPP work in progress describes requirements [TS_32_500] and an architectural specification [TS_36_300] for the self-configuration of edge node entities called eNodeBs. (The expansion of eNodeB is too unwieldy to spell out.) Specifically, procedures are specified for establishing transport connections to and for exchanging configuration data with control entities called MMEs (Mobility Management Entities) and with neighbouring eNodeBs. [TS_36_300] currently assumes as a starting precondition that the eNodeB knows its own IP address and knows IP address endpoints for the target MMEs and neighbouring eNodeBs.

The Broadband Forum has defined a CPE WAN Management Protocol (running over SOAP/HTTP/TLS) to manage customer premise equipment (CPE) terminating broadband access networks (typically DSL access
networks) [TR_069]. CPE devices locate and connect to an Auto-
Configuration Server (ACS), which provides configuration data and
software/firmware images and modules. The ACS also performs status
and performance monitoring and diagnostic functions. CPE devices use
DHCP to locate an ACS and since both peers, the ACS and CPE, can
initiate connections, the protocol can work across network address
translators (NATs). The DHCP exchange uses vendor-specific options
defined by the Broadband Forum (number 3561 in the IANA Enterprise
Numbers registry).

Next to service provider networks, many large enterprise networks
face the same challenge to roll out a large number of network
devices, which often connect to a 3rd party network provider. The
current development of IP-based home automation and utility
monitoring technologies might carry the problem to roll out large
numbers of devices that need to automatically configure themselves to
private households.

IETF work on automated configuration goes back to BOOTP [RFC0951],
followed eight years later by DHCP ([RFC1541] and successors). The
years since have seen a steady growth in the number of DHCP options.
The Simple Network Management Protocol (SNMP) [RFC3410] was designed
to convey management information between SNMP entities such as
managers and agents. The number of SNMP MIB modules grew steadily,
but SNMP has historically seen only limited use for configuration
[RFC3535]. For a period, IETF configuration efforts were focussed on
the distribution of policy information in the network. [RFC3139]
provides a good insight into this period. More recently, the network
configuration protocol NETCONF [RFC6241] was devised as an
alternative to SNMP, but the development of standard NETCONF
configuration data models is just beginning.

Recent IETF work closest in spirit to the 3GPP self-organizing
network effort cited above is embodied in CAPWAP [RFC5415]. Like the
3GPP work, CAPWAP focusses on the configuration of edge nodes, in a
Wi-Fi rather than cellular network. The CAPWAP work goes beyond that
of 3GPP by specifying the process of Access Controller (AC) discovery
rather than leaving discovery out of scope. A CAPWAP Wireless
Termination Point (WTP) may use broadcasts and multicasts to discover
local ACs, it may use CAPWAP DHCP options [RFC5417] to obtain IP
addresses of ACs, or it may utilize CAPWAP DNS SRV records if a
domain name is known. With regard to the configuration process
itself, CAPWAP provides for the download of new images to the WTP
(Wireless Termination Point). In contrast, [TS_32_500] assumes that
this has already been completed for the eNodeB.

As can seen, standards for the automated configuration of devices in
IP networks have so far been primarily developed for specific network
access technologies (3GPP, Broadband, 802.11 WLANs) and the various solutions make different assumptions about the services that are available and they are designed to support a configuration protocol that is specific to a certain access technology. The aim of this document is to analyse the various phases of an automated configuration process and to identify gaps that are currently not covered in standard and general purpose configuration management protocols of the IETF.

2. Intra-domain and Inter-domain Scenarios

There are two different scenarios to consider. In the first scenario, called the Intra-domain Scenario, the new network device N is attached to the network operated by the service provider which is also operating the new device. In the second scenario, called the Inter-domain Scenario, the new device N is attached to a third party network providing connectivity to the network of the service provider operating the new device.

```
+------+
| CONF |
+--+---+
| N +---+ R +---------------+---+---+----...
|     |     |       |       |
| DNS | DHCP |
+-----+ +------+
|-- N’s Service Provider --|
```

Figure 1: Intra-domain Scenario

Figure 1 depicts the Intra-domain Scenario. We assume that the new device N attaches to a link connected to router R. Furthermore, we assume that the service provider provides a Domain Name System (DNS) server, a reachable DHCP server, and a Configuration Server (CONF). Overall, this scenario does not differ much from conventional network scenarios.
Figure 2: Inter-domain Scenario

Figure 2 depicts the Inter-domain Scenario where the new device N attaches to a router R owned by a different service provider X. The service provider X might offer its own DNS service and a reachable DHCP service. We assume that the service provider X has connectivity to the service provider planning to operate the new device.

It should be noted that handing out DHCP options specific to N’s service provider via X’s DHCP service requires some close coordination between the two parties involved. This might be difficult in practice. A more general alternative might be to have X’s service provider establish a tunnel such that the new device logically appears to be part of N’s service provider network.

In both scenarios, the new device N is either directly reachable or it may be behind a middlebox such as a Network Address Translator (NAT) or a firewall. Middleboxes may impose restrictions on which party is able to initiate communication. As detailed in [I-D.kwatsen-reverse-ssh], it is often desirable to allow device-initiated connections.

3. Model of the Automated Configuration Process

We introduce a model of the configuration process in order to identify the parts that have well-known solutions. The remainder may be worth studying to see if the industry can agree on a solution.

Some basic terminology is needed for the discussion. Depending on the implementation, let us agree that "configuration data" consist of software and sets of configured parameters in some combination. This includes firmware, licenses, certificates, and other configuration data. Also, the system that provides the configuration data is called the "configuration server". Finally, the term "joining
"device" is used to denote a network device that is in the process of being incorporated into the network.

Broadly speaking, the configuration process can be broken into five phases:

1. Pre-configuration: configuration carried out either by the vendor or by the service provider prior to physical installation. One possible example is the pre-configuration of certificates or licenses or specific firmware.

2. Bootstrapping: the portion of the process from the time that physical installation is complete until a secure connection is established between the joining device and the configuration server.

3. Initial configuration: downloading of the configuration data that the joining device needs to carry out its function in the network.

4. Configuration auditing: tracking image versions and configuration parameters for each network device and verifying that the installed configuration data matches the physical installation, the network plan, and the records of what data was downloaded. It is possible that an initial audit of the physical installation is done before initial configuration, so that the validity of the intended download can be verified.

5. Configuration update: transferring configuration data to a fully configured and operating device from time to time as the need arises.

4. Phase 1: Pre-configuration

This memo identifies a specific requirement for pre-configuration of an invariant device identity and authentication-related material in the form of pre-shared secrets or certificates. There is, as one alternative, also a requirement for pre-configuration of information that permits the joining device to discover the address of the configuration server.

Note that pre-configuration may be carried out on the joining device itself or it may be provided to the joining device during the deployment process via pluggable memory cards or nearfield communication.
5. Phase 2: Bootstrapping

[I-D.sarikaya-core-sbootstrapping] deals with the process of security bootstrapping, with particular emphasis on the requirements for highly resource-constrained devices. The document makes a distinction between a data channel, which is used during network operation, and a control channel, which is used during bootstrapping. While both channels can be the same physical channel, they can also be different (e.g., a wireless access point using an infrared control channel to receive bootstrapping information). The draft discusses a number of possible security bootstrapping protocols for resource constrained devices that can be executed in several bootstrapping rounds and can be adapted to the specific contexts in terms of the resources available within individual devices and for the network as a whole.

For network devices in service provider networks or large enterprise networks, bootstrapping consists of several stages:

1. establishment of link layer connectivity with neighbouring nodes;
2. acquisition of IP addresses and basic routing information;
3. discovery of the configuration server;
4. establishment of a secure channel to the configuration server.

Each of these stages is further discussed below.

5.1. Establishment of Link Layer Connectivity

The protocol aspects of this phase are out of scope, since it involves non-IETF protocols only. While some link-layer technologies may provide authentication and access control, this cannot be assumed to be available in the general case.

5.2. Acquisition of IP Addresses and Basic Routing Information

For IPv4, DHCPv4 [RFC2131] is widely deployed and the usual way to obtain an IPv4 address, the IPv4 address of a link-local router and the IPv4 address of a DNS server. For IPv6, a choice has to be made between stateful DHCPv6 [RFC3315] versus stateless DHCPv6 [RFC3736] combined with stateless address autoconfiguration [RFC4862]. In the latter case, DHCPv6 is needed to configure parameters such as DNS server addresses. A routing advertisement option to configure the IPv6 address of a DNS server as part of the stateless address autoconfiguration is defined in [RFC6106].
Some security protection is provided in this stage by using DHCP authentication [RFC3118]. However, security of the configuration process as a whole has to be assured by other means. This is discussed further below.

Currently the lack of a stable identifier for use in DHCPv6 messaging is an impediment to authentication of the joining device. [RFC6355] discusses the problems with the current DHCPv6 identifiers (DUIDs) and proposes a new form that could be a more stable alternative.

A joining device can also choose to use a pre-configured IP address, a pre-configured link-local router address and a pre-configured DNS server address. This pre-configuration may be hard wired into the device or provided by a pluggable memory card or nearfield communication. However, a static pre-configuration hard-wires assumption about the network a device operates in and is therefore brittle and not recommended.

5.3. Finding the Configuration Server

Four alternatives are available for finding the configuration server:

- pre-configuration;
- DHCP configuration;
- Service Location Protocol [RFC2608]; or
- DNS service discovery using DNS SRV records [RFC2782].

Pre-configuration of an IP address is brittle and not recommended unless the IP address is used as an anycast address. In the case of an IP anycast address, the routing system will select one out of an anycast cluster of configuration servers the device connects to. For this to work well, all configuration servers in the anycast cluster should provide the same configuration data.

The pre-configuration of a Uniform Resource Identifier (URI) or fully qualified domain name (FQDN) is a slightly better approach than pre-configuring non-anycast IP addresses since this allows for a limited dynamic mapping of the name to an IP address. One variant that has been suggested is to burn the URI of a vendor server into the device’s firmware along with a device identifier, and have that server redirect to the URI of the service provider’s configuration server based on the device identity. Such an approach requires that the device vendor’s redirection server is always reachable, that the device vendor offers such a redirection service for the lifetime of their devices and that service providers are able to update the URI
of the service provider’s redirection server. Furthermore, this approach can lead to problems if certificates are used to authenticate the involved parties if a service provider tries to prevent the usage of a vendor’s redirection service. Finally, this approach also requires a trust relationship between the vendor and the service provider and agreement on a protocol to update the redirect information on the vendor’s server. As a consequence of these considerations, using this approach is not recommended.

DHCP configuration can use the usual DHCP options and is technically straightforward since DHCP is widely used by end user devices to obtain basic configuration information. There is, however, no standardized DHCP option to communicate the address of a configuration server.

The Service Location Protocol (SLP) has seen some usage to locate services such as printers or file system shares. Usage of SLP to locate configuration servers requires to define a new service template [RFC2609].

The use of DNS SRV records requires the joining device to obtain the correct domain suffix first, presumably from DHCP or via Routing Advertisements in the case of IPv6 or pre-configuration. A service type for the desired configuration protocol would have to be defined in the DNS for the purpose. See Section 3.3 of [RFC5415] for a discussion of the corresponding discovery process for CAPWAP.

The Inter-domain Scenario requires that the DHCP server or the SLP server of service provider X’s network is able to provide the correct information to the joining devices. To accomplish this, the discovery servers need to be able to match a device identification against a list of possible configuration servers. Furthermore, there needs to be a mechanism for the service provider operating the joining device to provision the configuration server’s address, e.g., by using an extension of the Extensible Provisioning Protocol (EPP) [RFC5730]. However, if the joining device has pre-configured information about the name of the service provider’s network, DNS SRV records may be queried after obtaining IP connectivity, avoiding the need to provision information in service provider X’s network.

5.4. Establishing a Secure Channel to the Configuration Server

It is essential that the configuration server and the joining device authenticate themselves to each other, since the steps leading up to this point in the process may not be fully secure. This raises two issues: how the joining device identifies itself, and how authentication takes place.
It seems best if the device has an invariant identity built in and accessible to whatever operating system is running on it. [RFC6355] provides such an identity in the form of a Universally Unique IDentifier (UUID). The vendor should make that identity available in a form that can be read and transferred into a database accessible to the configuration server along with the associated configuration data in advance of the bootstrapping stage (e.g., in bar-coded format on the device packaging).

Serial numbers may be used for identification purposes if UUIDs are not available. However, serial numbers often encode information such as model-numbers or manufacturing dates. Hence, it is not recommended to pass serial-numbers in the clear for security reasons. Similar precautions apply to Common Language Equipment Identifier (CLEI) codes that encode information about properties of the device.

This leaves the mutual authentication process itself. This has two aspects: the security protocol used to perform authentication, and initial keying methodology. The security protocol is tied together with the choice of configuration data transport, but the basic choices are:

- IP Security (IPsec) [RFC4301];
- Transport Layer Security (TLS) [RFC5246];
- Datagram Transport Layer Security (DTLS) [RFC6347];
- Secure Shell (SSH) [RFC4251], [RFC4252], [RFC4253], and [RFC4254]; and
- SNMPv3’s User-based Security Model (USM) [RFC3414].

For initial keying methodology, the two basic choices are between pre-shared secrets and certificates. All of the security protocols listed above except USM support both methods. USM supports pre-shared secrets only.

The usual concern with pre-shared secrets is scalability. In the bootstrapping case, the scale of operation required is linear with the number of devices to be configured, so it would definitely be a feasible approach if connection to the configuration system were the only consideration. The most likely procedure would be for the secret to be configured in the device during pre-configuration and also captured in a database along with the device identity, for use by the configuration server.

The problem with the use of pre-shared secrets is that the device
needs to authenticate itself at an earlier stage, while it is establishing communications with its neighbours and acquiring IP addresses. It seems undesirable to use the same secret that is used to authenticate the device to the configuration server for that purpose as well, on the basic principle of limiting the potential damage from disclosure of a particular key.

This need for additional pre-shared secrets argues for consideration of certificates as an alternative. One issue for certificates is where the trust anchor resides. It seems logical that it should reside with the service provider rather than the vendor, to make it easy to install equipment from multiple vendors. On that basis, pre-configuration requires service provider input. On the other hand, if devices are drop-shipped to the destination from the vendor, having the trust anchor reside with the vendor might be acceptable as well.

CAPWAP (Section 2.4.4.3 of [RFC5415]) makes use of the Extended Key Usage (EKU) certificate extension [RFC5280] to distinguish certificates identifying the Access Controllers (i.e., the configuration servers in the CAPWAP case) from the Wireless Transfer Points (the configured devices in the CAPWAP case). Thought should be given to whether such distinctions are required in the general case of network device configuration.

CAPWAP (Section 12.8 of [RFC5415]) also discusses the use of the Common Name rather than SubjectAltName field of the certificate to carry device identity, due to lack of a Uniform Resource Name (URN) specification allowing the use of SubjectAltName to carry MAC addresses. This encoding of device identifiers in certifications needs to be investigated further if a new form of device unique identity is used, as discussed above.

Middleboxes such as NATs or firewalls may impose restriction on which party is able to initiate communication. In the common case of NATs in IPv4 access networks, communication can only be established from the device to the configuration server. Not all secure transports, in particular those where authentication is not symmetric, support this "call home" mode of operation. A recent proposal to reverse the establishment of the TCP connection for SSH can be found in [I-D.kwatsen-reverse-ssh].

6. Phase 3: Initial Configuration

As mentioned at the beginning, the configuration data being downloaded may be a combination of software/firmware and configuration parameters. Some of the data will be vendor-specific and not subject to standardization. It appears that there is a
continuing debate on whether the configuration data should be pushed to the joining device or whether the device should pull the configuration data from the configuration server. In the latter case, the device needs to know about the existence of the data and the path to reach it before it can act. One way to acquire this information is through DHCP. DHCPv4 has provided the necessary options from its beginnings, inheriting them from BOOTP. They have been recently added to DHCPv6 [RFC5970].

Protocols that can transport configuration data can be classified as follows: The first class consists of generic file transfer protocols that can carry configuration data serialized into configuration files. The second class consists of protocols that manipulate structured configuration data directly. The structure of the configuration data is defined by some data model.

In the first class, we find the following file transfer protocols:

- The File Transfer Protocol (FTP) [RFC0959] can be used to move files containing configuration data. It can be secured by running FTP over TLS [RFC4217].
- The Trivial File Transfer Protocol (TFTP) [RFC1350] has been used extensively to load boot images over the network. However, it does not provide security and the only option is to rely on IP layer security (IPsec).
- The Hypertext Transfer Protocol (HTTP) [RFC2616] can be used to transfer documents containing configuration data. It is commonly secured by running HTTP over TLS [RFC2817], [RFC2818].
- The SSH File Transfer Protocol (SFTP) [I-D.ietf-secsh-filexfer] provides roughly the same services as FTP but runs over SSH and thus utilizes the security services provided by SSH.
- UNIX utilities to transfer files such as RCP and SCP provide limited flexibility and they differ in their degree of integration with SSH.
- The Control And Provisioning of Wireless Access Points (CAPWAP) protocol [RFC5415] can be used to control the download of images. CAPWAP can be secured by running CAPWAP over DTLS.

In the second class, we find the following configuration protocols:

- Version 3 of the Simple Network Management Protocol (SNMPv3) [RFC3411] can be used to manipulate MIB objects and to carry event notifications. SNMPv3 has its own security protocol (USM).
Internet-Draft Automated Configuration of IP Networks January 2013

[RFC3414] but can also run over the secure transports SSH [RFC5592], TLS, or DTLS [RFC6353].

- The Common Open Policy Service for Policy Provisioning protocol (COPS-PR) [RFC3084] was designed to provision structured policy information from a Policy Decision Point (PDP) to a Policy Enforcement Point (PEP). The COPS protocol [RFC2748] provides an integrity object that can achieve authentication, message integrity, and replay prevention. Optionally, COPS and COPS-PR can run over TLS.

- The NETCONF protocol [RFC6241] provides mechanisms to install, manipulate, and delete the configuration of network devices. A protocol extension provides an asynchronous event notification delivery mechanism [RFC5277]. NETCONF by default runs over SSH but can also run over transports secured by TLS.

- The Control And Provisioning of Wireless Access Points protocol (CAPWAP) [RFC5415] supports the discovery of so called Access Controller (AC) by Wireless Termination Points (WTPs) and the configuration of WTPs by an AC. While CAPWAP can be extended to configure other devices, its main focus are WTPs. The CAPWAP protocol is protected by using DTLS after the discovery phase.

Table 1 lists the protocols plus their basic properties while Table 2 lists the security options available for each protocol.

<table>
<thead>
<tr>
<th>Transport</th>
<th>Data Transfer Model</th>
</tr>
</thead>
<tbody>
<tr>
<td>FTP</td>
<td>Push or pull of (configuration) files</td>
</tr>
<tr>
<td>TFTP</td>
<td>Push or pull of (configuration) files</td>
</tr>
<tr>
<td>HTTP</td>
<td>Push or pull of (configuration) files</td>
</tr>
<tr>
<td>SFTP</td>
<td>Push or pull of (configuration) files</td>
</tr>
<tr>
<td>RCP</td>
<td>Push or pull of (configuration) files</td>
</tr>
<tr>
<td>SCP</td>
<td>Push or pull of (configuration) files</td>
</tr>
<tr>
<td>CAPWAP</td>
<td>AC pushes configuration parameters, WTP pulls software</td>
</tr>
<tr>
<td>SNMPv3</td>
<td>Push of structured configuration parameters, event notifications</td>
</tr>
<tr>
<td>COPS-PR</td>
<td>Push of structured policy information</td>
</tr>
<tr>
<td>NETCONF</td>
<td>Push of structured configuration data, event notifications</td>
</tr>
</tbody>
</table>

Table 1: Protocols for transporting configuration data
Table 2: Security options for configuration transport protocols

SNMPv3, NETCONF, and COPS-PR carry structured data specified in pre-defined data models. SNMPv3 and COPS-PR have size limitations on the data objects and thus make the transport of larger software images difficult. NETCONF does not suffer from hard size restrictions and can in principle carry software images inline. However, there is currently no work in progress to standardize the transfer of software images over NETCONF. CAPWAP combines the functions of configuration parameter transport and software download. The parameter transport aspect lacks the generality offered by SNMP, NETCONF, and COPS-PR, since the parameters are specified within the protocol specification itself. The remaining transports are independent of the nature of the information being transferred.

7. Phase 4: Configuration Auditing

To complete the process, it must be possible to audit the configuration status of the device in some detail. This is likely to begin even before all the configuration data has been downloaded. For instance, configuration management may wish to collect basic information such as the MAC addresses of the device’s interfaces, the link-local addresses assigned to them, and similar information for the neighbours of the joining device.

SNMP and SNMP MIB modules are obviously one way to collect this information. NETCONF [RFC6241] is an alternative, but the necessary data models have to be defined. YANG modules for NETCONF [RFC6020] can be generated from existing SNMP MIB modules by translating the SNMP modules into YANG modules [RFC6643].

Another important auditing activity is the analysis of system events.
The SYSLOG protocol [RFC5424] is widely used for this purpose but SNMPv3 and NETCONF can ship event notifications as well. Translations of SNMP notifications into structured SYSLOG messages and vice versa do exist [RFC5675], [RFC5676]. NETCONF can carry SYSLOG content as well [RFC5277].

NETCONF provides generic notifications that help with tracking configuration changes [RFC6470]. Similar standardized configuration change notifications do not exist for SNMP or SYSLOG.

8. Phase 5: Configuration Update

Configuration updates can in principle be handled with the same protocol that delivered the initial configuration. However, in some deployments, the mechanism used for initial configuration might be different.

An advantage of NETCONF over SNMPv3 and CAPWAP in the context of configuration updates is the support of concurrent updates through explicit locking mechanisms and the support of network wide configuration change transactions through the confirmed commit capability.

9. Gap Analysis

This document discussed the automated configuration of devices in large IP networks. Several gaps were identified requiring further specification:

G1: Definition of a DHCP option to provide the IPv4/IPv6 address of a configuration server. Such an option allows a joining device to pickup the configuration server’s address as part of the DHCP exchange. This is particularly interesting for Intra-domain Scenarios.

G2: Definition of DNS SRV records for locating configuration servers. Using SRV records, a joining device can lookup the configuration server’s address in the DNS. This is particularly useful in an Inter-domain Scenario.

G3: Definition of a SLP template for discovering configuration servers. Such a template is useful only in environments where SLP is used also for other purposes.
G4: Definition of NETCONF data models to support the download/update of software images through NETCONF.

G5: Definition of NETCONF data models for collecting basic system information and integrity information (e.g., checksums of software images).

G6: Some management protocols lack a mechanisms for devices to initiate a secure communication channel with a management system ("call home").

10. Security Considerations

The security of a configuration management solution is of crucial importance. Section 6 discusses the security options of several protocols that might be used. The relevant protocol definitions should be consulted to learn more about the specific security aspects of the various protocols.

It should be noted that some steps in the described process, in particular the bootstrapping phase, may not be secure and it is thus important to verify the identity of the device and the identity of the configuration server when a secure connection to a configuration server is established. Usage of IPsec, which focuses on securing the IP layer, may not be sufficient for this.

During the choice of protocols, the available security mechanisms and the required key management infrastructures may play a major role in the selection of protocols. Easy integration into existing Authentication, Authorization and Accounting (AAA) infrastructures can significantly reduce the operational costs associated with the security management of the configuration system.

While [I-D.sarikaya-core-sbootstrapping] discusses security bootstrapping mechanisms in the context of constrained devices, many of the mechanisms are also applicable for bootstrapping security in normal devices.

Finally, [RFC6092] discusses security capabilities for customer premises equipment providing residential IPv6 Internet service.

11. IANA Considerations

This memo includes no request to IANA.
12. Acknowledgements

Thanks to Ronald Bonica, Mehmet Ersue, Wesley George, Yiu Lee, Christopher Liljenstolpe, Kent Watsen, and Cathy Zhou for their comments during the preparation of this memo.

13. Informative References

[I-D.ietf-secsh-filexfer]

[I-D.kwatsen-reverse-ssh]
Watsen, K., "Reverse Secure Shell (Reverse SSH)", draft-kwatsen-reverse-ssh-01 (work in progress), June 2011.

[I-D.sarikaya-core-sbootstrapping]

[RFC2616] Fielding, R., Gettys, J., Mogul, J., Frystyk, H.,

Internet-Draft Automated Configuration of IP Networks January 2013

[RFC6643] Schoenwaelder, J., "Translation of Structure of Management Information Version 2 (SMIv2) MIB Modules to YANG
Modules", RFC 6643, July 2012.

Authors’ Addresses

Tina Tsou
Huawei Technologies (USA)
2330 Central Expressway
Santa Clara, CA 95050
USA

Phone:
Email: tina.tsou.zouting@huawei.com

Juergen Schoenwaelder (editor)
Jacobs University Bremen
Campus Ring 1
Bremen 28759
Germany

Phone:
Email: j.schoenwaelder@jacobs-university.de
On Firewalls in Internet Security
draft-ietf-opsawg-firewalls-01

Abstract

This document discusses the most important operational and security implications of using modern firewalls in networks. It makes recommendations for operators of firewalls, as well as for firewall vendors.

Status of this Memo

This Internet-Draft is submitted in full conformance with the provisions of BCP 78 and BCP 79.

Internet-Drafts are working documents of the Internet Engineering Task Force (IETF). Note that other groups may also distribute working documents as Internet-Drafts. The list of current Internet-Drafts is at http://datatracker.ietf.org/drafts/current/.

Internet-Drafts are draft documents valid for a maximum of six months and may be updated, replaced, or obsoleted by other documents at any time. It is inappropriate to use Internet-Drafts as reference material or to cite them other than as "work in progress."

This Internet-Draft will expire on April 21, 2013.

Copyright Notice

Copyright (c) 2012 IETF Trust and the persons identified as the document authors. All rights reserved.

This document is subject to BCP 78 and the IETF Trust’s Legal Provisions Relating to IETF Documents (http://trustee.ietf.org/license-info) in effect on the date of publication of this document. Please review these documents carefully, as they describe your rights and restrictions with respect to this document. Code Components extracted from this document must include Simplified BSD License text as described in Section 4.e of the Trust Legal Provisions and are provided without warranty as described in the Simplified BSD License.
1. Introduction

In this document, a firewall is defined as a device or software that imposes a policy whose effect is "a stated type of packets may or may not pass from A to B". All modern firewalls allow an administrator to change the policies in the firewall, although the ease of administration for making those changes, and the granularity of the policies, vary widely between firewalls and vendors.

Given this definition, it is easy to see that there is a perimeter (the position between A and B) in which the specific security policy applies. In typical deployed networks, there are usually some easy-to-define perimeters. If two or more networks that are connected by a single device, the perimeter is inside the device. If that device is a firewall, it can impose a security policy at the shared perimeters of those networks.

Many firewalls also employ some perimeters that are not as easy to define. Some of these perimeters in modern firewalls include:

- An application-layer gateway (ALG) in front of a server creates a perimeter between that server and the network it is connected to. The ALG blocks some of the flows in the application protocol based on policies such as "do not all traffic from this network" and "do not allow the client to send a message of this type".

- Routing domains that are controlled with role-based administration create perimeters in a routed network. Role-based administration makes rules such as "Domain X cannot see Domain Y in its routing table"; this prevents any host in Domain X from sending traffic to any host in Domain Y.

- [[[MORE HERE with other interesting perimeters]]]

Modern firewalls apply perimeters at three layers:

- Layer 3: Most firewalls can filter based on source and destination IPv4 addresses. Many (but, frustratingly, not all) firewalls can filter based on IPv6 addresses.

- Layer 4: Most firewalls can filter based on TCP and UDP ports. Many (but, frustratingly, not all) firewalls can also filter based on transports other than TCP and UDP.

- Layer 7: Modern firewalls can filter based on the application protocol contents, such as to allow or block certain types of protocol-defined messages, or based on the contents of those messages.
Note that many firewall devices can only create policies at one or two of the layers.

Hardware-based firewalls by their nature inspect traffic flowing through them, sometimes using proprietary mechanisms to make traffic analysis as fast as possible on the given hardware. Some firewalls use network visibility protocols such as NetFlow and sFlow to help capture and analyze traffic. [[References needed]]

1.1. Modern Firewall Features That Should Not Be Confused with Firewalling

There are a few features that appear in any firewall devices that have become associated with firewalls but in fact are not used for firewalling. Those non-firewalling features include:

- Network Address Translation (NAT) [RFC2993], which is not used for security policy
- IPsec [RFC4301], which is used for virtual private networks (VPNs). Although the core IPsec protocol has firewalling in it, when IPsec appears in a firewall device, it is normally only associated with the application of authenticated encryption and integrity protection of traffic.

"SSL VPN" is a set of technologies that rely on tunneling traffic through the TLS [RFC5246] protocol running on port 443. Some firewalls offer SSL VPNs as an alternative to IPsec.

Traffic prioritization is a feature common in firewalls, but does not meet the definition of firewalling at all.

1.2. Terminology

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this document are to be interpreted as described in [RFC2119].

Some terms which have specific meanings in this document (such as "firewall") are defined earlier in this section.

2. High-Level Firewall Concepts

2.1. The End-to-End Principle

One common complaint about firewalls in general is that they violate the End-to-End Principle [EndToEnd]. The End-to-End Principle is
often incorrectly stated as requiring that "application specific functions ought to reside in the end hosts of a network rather than in intermediary nodes, provided they can be implemented 'completely and correctly' in the end hosts" or that "there should be no state in the network."

What it actually says is heavily nuanced, and is a line of reasoning applicable when considering any two communication layers. The document says that it "presents a design principle that helps guide placement of functions among the modules of a distributed computer system. The principle, called the end-to-end argument, suggests that functions placed at low levels of a system may be redundant or of little value when compared with the cost of providing them at that low level."

In other words, the End-to-End Argument is not a prohibition against lower layer retries of transmissions, which can be important in certain LAN technologies, nor of the maintenance of state, nor of consistent policies imposed for security reasons. It is, however, a plea for simplicity. Any behavior of a lower communication layer, whether found in the same system as the higher layer (and especially application) functionality or in a different one, that from the perspective of a higher layer introduces inconsistency, complexity, or coupling extracts a cost. That cost may be in user satisfaction, difficulty of management or fault diagnosis, difficulty of future innovation, reduced performance, or other forms. Such costs need to be clearly and honestly weighed against the benefits expected, and used only if the benefit outweighs the cost.

From that perspective, introduction of a policy that prevents communication under an understood set of circumstances, whether it is to prevent access to pornographic sites or prevents traffic that can be characterized as an attack, does not fail the end to end argument; there are any number of possible sites on the network that are inaccessible at any given time, and the presence of such a policy is easily explained and understood.

What does fail the end-to-end argument is behavior that is intermittent, difficult to explain, or unpredictable. If I can sometimes reach a site and not at other times, or reach it using this host or application but not another, I wonder why that is true, and may not even know where to look for the issue.

2.2. Building a Communication

Any communication requires at least three components:
In the Internet, the IP network is the channel; it may traverse something as simple as a directly connected cable or as complex as a sequence of ISPs, but it is the means of communication. In normal communications, a sender sends a message via the channel to the receiver, who is willing to receive and operate on it. In contrast, attacks are a form of harassment. A receiver exists, but is unwilling to receive the message, has no application to operate on it, or is by policy unwilling to. Attacks on infrastructure occur when message volume overwhelms infrastructure or uses infrastructure but has no obvious receiver.

By that line of reasoning, a firewall primarily protects infrastructure, by preventing traffic that would attack it from it. The best prophylactic might use a procedure for the dissemination of flow specification rules from [RFC5575] to drop traffic sent by an unauthorized or inappropriate sender or which has no host or application willing to receive it as close as possible to the sender.

In other words, as discussed in Section 1, a firewall compares to the human skin, and has as its primary purpose the prophylactic defense of a network. By extension, the firewall also protects a set of hosts and applications, and the bandwidth that serves them, as part of a strategy of defense in depth. A firewall is not itself a security strategy; the analogy to the skin would say that a body protected only by the skin has an immune system deficiency and cannot be expected to long survive. That said, every security solution has a set of vulnerabilities; the vulnerabilities of a layered defense is the intersection of the vulnerabilities of the various layers (e.g., a successful attack has to thread each layer of defense).

3. Firewalling Strategies

There is a great deal of tension in firewall policies between two primary goals of networking: the security goal of "block traffic unless it is explicitly allowed" and the networking goal of "trust hosts with new protocols". The two inherently cannot coexist easily in a set of policies for a firewall.
3.1. Blocking Traffic Unless It Is Explicitly Allowed

The security goal of "block traffic unless it is explicitly allowed" prevents useful new applications. This problem has been seen repeatedly over the past decade: a new and useful application protocol is deployed, but it cannot get wide adoption because it is blocked by firewalls. The result has been a tendency to try to run new protocols over established applications, particularly over HTTP [RFC3205]. The result is protocols that do not work as well they might if they were designed from scratch.

Worse, the same goal prevents the deployment of useful transports other than TCP, UDP, and ICMP. A conservative firewall that only knows those three transports will block new transports such as SCTP [RFC4960]; this in turn causes the Internet to not be able to grow in a healthy fashion. Many firewalls will also block TCP and UDP options they don’t understand, and this has the same unfortunate result.

[[[MORE HERE about forcing more costly and error-prone layer 7 inspection]]]

3.2. Typical Firewall Categories

Most IPv4 firewalls have pre-configured security policies that fall into one of the following categories:

I: Block all outside-initiated traffic, allow all inside-initiated traffic

II: Same as I, but allow outside-initiated traffic to some specific inside hosts. The specified hosts are often added by IP address (or sometimes by DNS host name), and the host may be limited to particular transport and application protocols. For example, a rule might allow traffic destined to 203.0.113.226 on TCP ports 80 and 443.

III: Same as I or II, but allow some outside-initiated traffic over some protocols to all hosts. For example, a firewall protecting a farm of web servers might want to allow traffic using TCP ports 80 and 443 to all addresses protected by the firewall so that new servers can be deployed without having to update the firewall rules.

Firewalls that understand IPv6 may have a fourth category:

IV: Allow nearly all outside-initiated traffic. [[[MORE HERE about why this is considered a good idea by some and a bad idea by...]]]
3.3. Newer categories of firewalling

[[[MORE HERE on blocking traffic based on dynamic origin reputation such as the long-expired vyncke-advanced-ipv6-security]]]

4. Recommendations for Operators

[[[MORE HERE with the following outline]]]

Firewalling strategies
- None. This is really the operator’s choice.
- Be aware that deep packet inspection causes varying amounts of delay in firewalls, particularly for long-lived flows
- Don’t enforce protocol semantics in the firewall
- Applications are easier to change than firewalls
- Avoid using application-layer gateways for firewalling
- Use the security in the applications servers instead
- Servers are easier to change than firewalls
- However, ALGs are useful for IPv4-IPv6 conversion and proxying in some protocols
- Allow fragments
 - Except in specific protocols where layer 7 content filtering is deemed crucial
- Document your intended firewall strategy and settings
 - Be sure that other operators of the firewall are able to see it
- Don’t rely on a NAT for security (see Appendix A)
- If using IPsec or SSL VPN, test whether the filtering rules for the rest of the firewall apply

5. Recommendations for Firewall Vendors

[[[MORE HERE with the following outline]]]

- Make a set of NAT-like rules for IPv6 easily choosable
- Interface for pinholing of IPv4 NATs needs clearly identify security issues
- Follow the BEHAVE RFC rules for binding timeouts on NATs
- Keep a summary log of non-normal events to aid reviewing
- Make leaving notes about the firewalling rules easy and useful
- Implement draft-ietf-pcp-base and probably the follow-on protocols from that WG
6. IANA Considerations

 None.

7. Security Considerations

 This document is all about security considerations. It introduces no new ones.

8. Acknowledgements

 Warren Kumari commented on this document.

9. References

9.1. Normative References

9.2. Informative References

Appendix A. IPv4 NATs Are Not Security Devices

Their security is a side-effect of their design. [[[MORE HERE about the history and why some operators mistake the security policy of NATs with firewalls.]]]

[[[MORE HERE about how pinholes mess badly that security policy.]]]

[[[MORE HERE about PCP and how to integrate it with a firewall security policy.]]]

Recommendations for deploying NATs in firewalls include:

- NATs should only be used when more IPv4 addresses are needed
- Operators should not pinhole to addresses that are unpredictably assigned by DHCP

Appendix B. Origin Reputation and Firewalls

[[[MORE HERE with the following outline]]]

Letting someone else curate your security policy
Different types of reputation for different layers
draft-ietf-repute-model
draft-vyncke-advanced-ipv6-security
draft-hallambaker-omnibroker
Recommendations
- Check logs to be sure updates are happening
- Check vendors’ policies

Authors’ Addresses

Fred Baker
Cisco Systems
Email: fred@cisco.com

Paul Hoffman
VPN Consortium
Email: paul.hoffman@vpnc.org
Abstract

This document specifies a framework to integrate a Network Address Translation layer into an operator’s network to function as a Carrier Grade NAT (also known as CGN or Large Scale NAT). The CGN infrastructure will often form a NAT444 environment as the subscriber home network will likely also maintain a subscriber side NAT function. Exhaustion of the IPv4 address pool is a major driver compelling some operators to implement CGN. Although operators may wish to deploy IPv6 to strategically overcome IPv4 exhaustion, near term needs may not be satisfied with an IPv6 deployment alone. This document provides a practical integration model which allows the CGN platform to be integrated into the network, meeting the connectivity needs of the subscriber while being mindful of not disrupting existing services and meeting the technical challenges that CGN brings. The model included in this document utilizes BGP/MPLS IP VPNs which allow for virtual routing separation helping ease the CGNs impact on the network. This document does not intend to defend the merits of CGN.

Status of This Memo

This Internet-Draft is submitted in full conformance with the provisions of BCP 78 and BCP 79.

Internet-Drafts are working documents of the Internet Engineering Task Force (IETF). Note that other groups may also distribute working documents as Internet-Drafts. The list of current Internet-Drafts is at http://datatracker.ietf.org/drafts/current/.

Internet-Drafts are draft documents valid for a maximum of six months and may be updated, replaced, or obsoleted by other documents at any time. It is inappropriate to use Internet-Drafts as reference material or to cite them other than as "work in progress."

This Internet-Draft will expire on October 15, 2014.
1. Introduction .. 3
 1.1. Terms ... 3
2. Existing Network Considerations .. 4
3. CGN Network Deployment Requirements 4
 3.1. Centralized versus Distributed Deployment 5
 3.2. CGN and Traditional IPv4 Service Co-existence 6
 3.3. CGN By-Pass ... 6
 3.4. Routing Plane Separation ... 7
 3.5. Flexible Deployment Options 7
 3.6. IPv4 Overlap Space .. 7
 3.7. Transactional Logging for CGN Systems 8
 3.8. Base CGN Requirements ... 8
4. BGP/MPLS IP VPN based CGN Framework 8
 4.1. Service Separation ... 10
 4.2. Internal Service Delivery 11
 4.2.1. Dual Stack Operation 13
 4.3. Deployment Flexibility .. 15
 4.4. Comparison of BGP/MPLS IP VPN Option versus other CGN Attachment Options ... 15
 4.4.1. Policy Based Routing 15
 4.4.2. Traffic Engineering ... 16
 4.4.3. Multiple Routing Topologies 16
 4.5. Multicast Considerations 16
5. Experiences .. 16
 5.1. Basic Integration and Requirements Support 16
 5.2. Performance ... 17
6. IANA Considerations .. 17
7. Security Considerations .. 17
8. BGP/MPLS IP VPN CGN Framework Discussion 17
9. Acknowledgements .. 18
10. References .. 18
1. Introduction

Operators are faced with near term IPv4 address exhaustion challenges. Many operators may not have a sufficient amount of IPv4 addresses in the future to satisfy the needs of their growing subscriber base. This challenge may also be present before or during an active transition to IPv6 somewhat complicating the overall problem space.

To face this challenge, operators may need to deploy CGN (Carrier Grade NAT) as described in [RFC6888] to help extend the connectivity matrix once IPv4 address caches run out on the local local operator. CGN deployments will most often be added into operator networks which already have active IPv4 and/or IPv6 services.

The addition of the CGN introduces an operator controlled and administered translation layer which should be added in a manner which minimizes disruption to existing services. The CGN system addition may also include interworking in a dual stack environment where the IPv4 path requires translation.

This document shows how BGP/MPLS IP VPNs as described in [RFC4364] can be used to integrate the CGN infrastructure solving key integration challenges faced by the operator. This model has also been tested and validated in real production network models and allows fluid operation with existing IPv4 and IPv6 services.

1.1. Terms

A list of acronyms used throughout this document are defined in list below.

- CGN - Carrier Grade NAT
- DOCSIS - Data Over Cable Service Interface Specification
- CMTS - Cable Modem Termination System
- DSL - Digital subscriber line
- BRAS - Broadband Remote Access Server
- GGSN - Gateway GPRS Support Node
GPRS - General Packet Radio Service
ASN-GW - Access Service Network Gateway
GRT - Global Routing Table

Internal Realm - Addressing and/or network zone been the CPE and CGN as specified in [RFC6888]
External Realm - Public side network zone and addressing on the Internet facing side of the CGN as specified in [RFC6888]

2. Existing Network Considerations

The selection of CGN may be made by an operator based on a number of factors. The overall driver to use CGN may be the depletion of IPv4 address pools which leaves little to no addresses for a growing IPv4 service or connection demand growth. IPv6 is considered the strategic answer for IPv4 address depletion; however, the operator may independently decide that CGN is needed to supplement IPv6 and address their particular IPv4 service deployment needs.

If the operator has chosen to deploy CGN, they should do this in a manner as not to negatively impact the existing IPv4 or IPv6 subscriber base. This will include solving a number of challenges since subscribers whose connections require translation will have network routing and flow needs which are different from legacy IPv4 connections.

3. CGN Network Deployment Requirements

If a service provider is considering a CGN deployment with a provider NAT44 function, there are a number of basic architectural requirements which are of importance. Preliminary architectural requirements may require all or some of those captured in the list below. Each of the architectural requirement items listed are expanded upon in the following subsections. It should be noted that architectural CGN requirements add additive to base CGN functional requirements in [RFC6888]. The assessed architectural requirements for deployment are:

- Support distributed (sparse) and centralized (dense) deployment models;

- Allow co-existence with traditional IPv4 based deployments, which provide global scoped IPv4 addresses to CPEs;
- Provide a framework for CGN by-pass supporting non-translated flows between endpoints within a provider’s network;

- Provide a routing framework which allows the segmentation of routing control and forwarding paths between CGN and non-CGN mediated flows;

- Provide flexibility for operators to modify their deployments over time as translation demands change (connections, bandwidth, translation realms/zones and other vectors);

- Flexibility should include integration options for common access technologies such as DSL (BRAS), DOCSIS (CMTS), Mobile (GGSN/PGW/ASN-GW), and direct Ethernet;

- Support deployment modes that allow for IPv4 address overlap within the operator’s network (between various translation realms or zones);

- Allow for evolution to future dual-stack and IPv4/IPv6 transition deployment modes;

- Transactional logging and export capabilities to support auxiliary functions including abuse mitigation;

- Support for stateful connection synchronization between translation instances/elements (redundancy);

- Support for CGN Shared Space [RFC6598] deployment modes if applicable;

- Allows for the enablement of CGN functionality (if required) while still minimizing costs and subscriber impact to the best extend possible;

Other requirements may be assessed on a operator-by-operator basis, but those listed above may be considered for any given deployment architecture.

3.1. Centralized versus Distributed Deployment

Centralized deployments of CGN (longer proximity to end user and/or higher densities of subscribers/connections to CGN instances) differ from distributed deployments of CGN (closer proximity to end user and/or lower densities of subscribers/connections to CGN instances). Service providers may likely deploy CGN translation points more centrally during initial phases if the early system demand is low. Early deployments may see light loading on these new systems since
legacy IPv4 services will continue to operate with most endpoints using globally unique IPv4 addresses. Exceptional cases which may drive heavy usage in initial stages may include operators who already translate a significant portion of their IPv4 traffic; may transition to a CGN implementation from legacy translation mechanisms (i.e. traditional firewalls); or build a green field deployment which may see quick growth in the number of new IPv4 endpoints which require Internet connectivity.

Over time, some providers may need to expand and possibly distribute the translation points if demand for the CGN system increases. The extent of the expansion of the CGN infrastructure will depend on factors such as growth in the number of IPv4 endpoints, status of IPv6 content on the Internet and the overall progress globally to an IPv6-dominate Internet (reducing the demand for IPv4 connectivity). The overall demand for CGN resources will probably follow a bell-like curve with a growth, peak and decline period.

3.2. CGN and Traditional IPv4 Service Co-existence

Newer CGN serviced endpoints will exist alongside endpoints served by traditional IPv4 globally routed IPv4 addresses. Operators will need to rationalize these environments since both have distinct forwarding needs. Traditional IPv4 services will likely require (or be best served) direct forwarding towards Internet peering points while CGN mediated flows require access to a translator. CGN and non-CGN mediated flows pose two fundamentally different forwarding needs.

The new CGN environments should not negatively impact the existing IPv4 service base by forcing all traffic to translation enabled network points since many flows do not require translation and this would reduce performance of the existing flows. This would also require massive scaling of the CGN which is a cost and efficiency concern as well.

Traffic flow and forwarding efficiency is considered important since networks are under considerable demand to deliver more and more bandwidth without the luxury of needless inefficiencies which can be introduced with CGN.

3.3. CGN By-Pass

The CGN environment is only needed for flows with translation requirements. Many flows which remain within the operator’s network, do not require translation. Such services include operator offered DNS Services, DHCP Services, NTP Services, Web Caching, E-Mail, News and other services which are local to the operator’s network.
The operator may want to leverage opportunities to offer third party services without translation. CGN by-pass can be accomplished in many ways, but a simplistic, deterministic and scalable model is preferred.

3.4. Routing Plane Separation

Many operators will want to engineer traffic separately for CGN flows versus flows which are part of the more traditional IPv4 environment. Many times the routing of these two major flow types differ, therefore route separation may be required.

Routing plane separation also allows the operator to utilize other addressing techniques, which may not be feasible on a single routing plane. Such examples include the use of overlapping private address space [RFC1918], Shared Address Space [RFC6598] or use of other IPv4 space which may overlap globally within the operator’s network.

3.5. Flexible Deployment Options

Service providers operate complex routing environments and offer a variety of IPv4 based services. Many operator environments utilize distributed peering infrastructures for transit and peering and these may span large geographical areas and regions. A CGN solution should offer the operator an ability to place CGN translation points at various points within their network.

The CGN deployment should also be flexible enough to change over time as demand for translation services increase or change as noted in [RFC6264]. In turn, the deployment will need to then adapt as translation demand decreases caused by the transition of flows to IPv6. Translation points should be able to be placed and moved with as little re-engineering effort as possible minimizing the risks to the subscriber base.

Depending on hardware capabilities, security practices and IPv4 address availability, the translation environments may need to be segmented and/or scaled over time to meet organic IPv4 demand growth. Operators may also want to choose models that support transition to other translation environments such as DS-Lite [RFC6333] and/or NAT64 [RFC6146]. Operators will want to seek deployment models which are conducive to meeting these goals as well.

3.6. IPv4 Overlap Space

IPv4 address overlap for CGN translation realms may be required if insufficient IPv4 addresses are available within the operator environment to assign internally unique IPv4 addresses to the CGN
The CGN deployment should provide mechanisms to manage IPv4 overlap if required.

3.7. Transactional Logging for CGN Systems

CGNs may require transactional logging since the source IP and related transport protocol information is not easily visible to external hosts and system.

If needed, the CGN systems should be able to generate logs which identify internal realm host parameters (i.e. IP/Port) and associated them to external realm parameters imposed by the translator. The logged information should be stored on the CGN hardware and/or exported to another system for processing. The operator may choose to also enable mechanisms to help reduce logging such as block allocation of UDP and TCP ports or deterministic translation options such as [I-D.donley-behave-deterministic-cgn].

Operators may be legally obligated to keep track of translation information. The operator may need to utilize their standard practices in handling sensitive customer data when storing and/or transporting such data. Further information can be found in [RFC6888] with respect to CGN logging requirements (Logging section).

3.8. Base CGN Requirements

Whereas the requirements above represent assessed architectural requirements, the CGN platform will also need to meet the need to meet the base CGN requirements of a CGN function. Base requirements include such functions as Bulk Port Allocation and other CGN device specific functions. These base CGN platform requirements are captured within [RFC6888].

4. BGP/MPLS IP VPN based CGN Framework

The BGP/MPLS IP VPN [RFC4364] framework for CGN segregates the internal realms within the service provider space into Layer-3 MPLS based VPNs. The operator can deploy a single realm for all CGN based flows, or can deploy multiple realms based on translation demand and other factors such as geographical proximity. A realm in this model refers to a ‘VPN’ which shares a unique Route Distinguisher/Route Target (RD/RT) combination, routing plane and forwarding behaviours.

The BGP/MPLS IP VPN infrastructure provides control plane and forwarding separation for the traditional IPv4 service environment and CGN environment(s). The separation allows for routing information (such as default routes) to be propagated separately for CGN and non-CGN based subscriber flows. Traffic can be efficiently
routed to the Internet for normal flows, and routed directly to
translators for CGN mediated flows. Although many operators may run
a "default-route-free" core, IPv4 flows which require translation
must obviously be routed first to a translator, so a default route is
acceptable for the internal realms.

The physical location of the Virtual Routing and Forwarding (VRF)
Termination point for a BGP/MPLS IP VPN enabled CGN can vary and be
located anywhere within the operator’s network. This model fully
virtualizes the translation service from the base IPv4 forwarding
environment which will likely be carrying Internet bound traffic.
The base IPv4 environment can continue to service traditional IPv4
subscriber flows plus post translated CGN flows.

Figure 1 provides a view of the basic model. The Access node
provides CPE access to either the CGN VRF or the Global Routing
Table, depending on whether the subscriber receives a private or
public IP. Translator mediated traffic follows an MPLS Label-
switched Path (LSP) which can be setup dynamically and can span one
hop, or many hops (with no need for complex routing policies).
Traffic is then forwarded to the translator (shown below) which can
be an external appliance or integrated into the VRF Termination
(Provider Edge) router. Once traffic is translated, it is forwarded
to the global routing table for general Internet forwarding. The
Global Routing table can also be a separate VRF (Internet Access VPN/
VRF) should the provider choose to implement their Internet based
services in that fashion. The translation services are effectively
overlaid onto the network, but are maintained within a separate
forwarding and control plane.
If more than one VRF (translation realm) is used within the operator’s network, each VPN instance can manage CGN flows independently for the respective realm. The described architecture does not prescribe a single redundancy model that ensures network availability as a result of CGN failure. Deployments are able to select a redundancy model that fits best with their network design. If state information needs to be passed or maintained between hardware instances, the vendor would need to enable this feature in a suitable manner.

4.1. Service Separation

The MPLS/VPN CGN framework supports route separation. The traditional IPv4 flows can be separated at the access node (Initial Layer 3 service point) from those which require translation. This type of service separation is possible on common technologies used for Internet access within many operator networks. Service separation can be accomplished on common access technology including those used for DOCSIS (CMTS), Ethernet Access, DSL (BRAS), and Mobile Access (GGSN/ASN-GW) architectures.
4.2. Internal Service Delivery

Internal services can be delivered directly to the privately addressed endpoint within the CGN domain without translation. This can be accomplished in one of two methods. The first method may include reducing the overall number of VRFs in the system and exposing services in the GRT along with a method of exchanging routes between the CGN VRF and GRT called route leaking. The second method, which is described in detail within this section is the use of a Services VRF. The second model is a more traditional extranet services model, but requires more system resources to implement.

Using direct route exchange (import/export) between the CGN VRFs and the Services VRFs creates reachability using the aforementioned extranet model available in the BGP/MPLS IP VPN structure. This model allows the provider to maintain separate forwarding rules for translated flows, which require a pass through the translator to reach external network entities, versus those flows which need to access internal services. This operational detail can be advantageous for a number of reasons such as service access policies and endpoint identification.

First, the provider can reduce the load on the translator since internal services do not need to be factored into the scaling of the CGN hardware (which may be quite large). Secondly, more direct forwarding paths can be maintained providing better network efficiency. Thirdly, geographic locations of the translators and the services infrastructure can be deployed in locations in an independent manner. Additionally, the operator can allow CGN subject endpoints to be accessible via an untranslated path reducing the complexities of provider initiated management flows. This last point is of key interest since NAT removes transparency to the end device in normal cases.

Figure 2 below shows how internal services are provided untranslated since flows are sent directly from the access node to the services node/VRF via an MPLS LSP. This traffic is not forwarded to the CGN translator and therefore is not subject to problematic behaviours related to NAT. The services VRF contains routing information which can be "imported" into the access node VRF and the CGN VRF routing information can be "imported" into the Services VRF.
An extension to the services delivery LSP is the ability to also provide direct subscriber to subscriber traffic flows between CGN zones. Each zone or realm may be fitted with separate CGN resources, but the subtending subscribers don’t necessarily need to be mediated (translated) by the CGN translators. This option, as shown in Figure 3 below, is easy to implement and can only be enabled if no IPv4 address overlap is used between communicating CGN zones.

Figure 2: Internal Services and CGN By-Pass
The inherent capabilities of the BGP/MPLS IP VPN model demonstrates the ability to offer CGN By-Pass in a standard and deterministic manner without the need of policy based routing or traffic engineering.

4.2.1. Dual Stack Operation

The BGP/MPLS IP VPN CGN model can also be used in conjunction with IPv4/IPv6 dual stack service modes. Since many providers will use CGNs on an interim basis while IPv6 matures within the global Internet or due to technical constraints, a dual stack option is of strategic importance. Operators can offer this dual stack service
for both traditional IPv4 (global IP) endpoints and CGN mediated endpoints.

Operators can separate the IP flows for IPv4 and IPv6 traffic, or use other routing techniques to move IPv6 based flows towards the GRT (Global Routing Table or Instance) while allowing IPv4 flows to remain within the IPv4 CGN VRF for translator services.

The Figure 4 below shows how IPv4 translation services can be provided alongside IPv6 based services. The model shown allows the provider to enable CGN to manage IPv4 flows (translated) and IPv6 flows are routed without translation efficiently towards the Internet. Once again, forwarding of flows to the translator does not impact IPv6 flows which do not require this service.

Figure 4: CGN with IPv6 Dual Stack Operation
4.3. Deployment Flexibility

The CGN translator services can be moved, separated or segmented (new translation realms) without the need to change the overall translation design. Since dynamic LSPs are used to forward traffic from the access nodes to the translation points, the physical location of the VRF termination points can vary and be changed easily.

This type of flexibility allows the service provider to initially deploy more centralized translation services based on relatively low loading factors, and distribute the translation points over time to improve network traffic efficiencies and support higher translation load.

Although traffic engineered paths are not required within the MPLS/VPN deployment model, nothing precludes an operator from using technologies like MPLS with Traffic Engineering [RFC3031]. Additional routing mechanisms can be used as desired by the provider and can be seen as independent. There is no specific need to diversify the existing infrastructure in most cases.

4.4. Comparison of BGP/MPLS IP VPN Option versus other CGN Attachment Options

Other integration architecture options exist which can attach CGN based service flows to a translator instance. Alternate options which can be used to attach such services include:

- Policy Based Routing (Static) to direct translation bound traffic to a network based translator;
- Traffic Engineering or;
- Multiple Routing Topologies

4.4.1. Policy Based Routing

Policy Based Routing (PBR) provides another option to direct CGN mediated flows to a translator. PBR options, although possible, are difficult to maintain (static policy) and must be configured throughout the network with considerable maintenance overhead.

More centralized deployments may be difficult or too onerous to deploy using Policy Based Routing methods. Policy Based Routing would not achieve route separation (unless used with others options), and may add complexities to the providers’ routing environment.
4.4.2. Traffic Engineering

Traffic Engineering can also be used to direct traffic from an access node towards a translator. Traffic Engineering, like MPLS-TE, may be difficult to setup and maintain. Traffic Engineering provides additional benefits if used with MPLS by adding potentials for faster path re-convergence. Traffic Engineering paths would need to be updated and redefined overtime as CGN translation points are augmented or moved.

4.4.3. Multiple Routing Topologies

Multiple routing topologies can be used to direct CGN based flows to translators. This option would achieve the same basic goal as the MPLS/VPN option but with additional implementation overhead and platform configuration complexity. Since operator based translation is expected to have an unknown lifecycle, and may see various degrees of demand (dependant on operator IPv4 Global space availability and shift of traffic to IPv6), it may be too large of an undertaking for the provider to enabled this as their primary option for CGN.

4.5. Multicast Considerations

When deploying BGP/MPLS IP VPN’s as an service method for user plane traffic to access CGN, one needs to be cognizant of current or future IP multicast requirements. User plane IP Multicast which may originate outside of the VRF requires more consideration specific consideration. Adding the requirement for user plane IP multicast can potentially cause additional complexity related to import and exporting the IP multicast routes in addition to sub optimal scaling, and bandwidth utilization.

It is recommended to reference best practice and designs from [RFC6037], [RFC6513], and [RFC5332]

5. Experiences

5.1. Basic Integration and Requirements Support

The MPLS/VPN CGN environment has been successfully integrated into real network environments utilizing existing network service delivery mechanisms. It solves many issues related to provider based translation environments, while still subject to problematic behaviours inherent within NAT.

Key issues which are solved or managed with the MPLS/VPN option include:
- Centralized and Distributed Deployment model support
- Routing Plane Separation for CGN flows versus traditional IPv4 flows
- Flexible Translation Point Design (can relocate translators and split translation zones easily)
- Low maintenance overhead (dynamic routing environment with little maintenance of separate routing infrastructure other than management of MPLS/VPNs)
- CGN By-pass options (for internal and third party services which exist within the provider domain)
- IPv4 Translation Realm overlap support (can reuse IP addresses between zones with some impact to extranet service model)
- Simple failover techniques can be implemented with redundant translators, such as using a second default route

5.2. Performance

The MPLS/VPN CGN model was observed to support basic functions which are typically used by subscribers within an operator environment. A full review of the observed impacts related to CGN (NAT444) are covered in [RFC7021].

6. IANA Considerations

This document has no IANA actions.

7. Security Considerations

An operator implementing CGN using BGP/MPLS IP VPNs should refer to [RFC6888] section 7 for security considerations related to CGN deployments. The operator should continue to employ standard security methods in place for their standard MPLS deployment and can also refer to the security considerations section in [RFC4364] which discusses both control plane and data plane security.

8. BGP/MPLS IP VPN CGN Framework Discussion

The MPLS/VPN delivery method for a CGN deployment is an effective and scalable way to deliver mass translation services. The architecture avoids the complex requirements of traffic engineering and policy based routing when combining these new service flows to existing IPv4 operation. This is advantageous since the NAT44/CGN environments
should be introduced with as little impact as possible and these environments are expected to change over time.

The MPLS/VPN based CGN architecture solves many of this issues related to deploying this technology in existing operator networks.

9. Acknowledgements

Thanks to the following people for their comments and feedback: Dan Wing, Chris Metz, Chris Donley, Tina TSOU, Christoph Liljenstolpe and Tom Taylor.

Thanks to the following people for their participating in integrating and testing the CGN environment and for their IPv6 transition guidance: Syd Alam, Richard Lawson, John E Spence, John Jason Brzozowski, Chris Donley, Jason Weil, Lee Howard, Jean-Francois Tremblay

10. References

10.1. Normative References

10.2. Informative References

Internet-Draft CGN Deployment with BGP/MPLS IP VPNs April 2014

Authors’ Addresses

Victor Kuarsingh (editor)
Rogers Communications
8200 Dixie Road
Brampton, Ontario L6T 0C1
Canada

Email: victor@jvknet.com
URI: http://www.rogers.com
John Cianfarani
Rogers Communications
8200 Dixie Road
Brampton, Ontario L6T 0C1
Canada

Email: john.cianfarani@rci.rogers.com
URI: http://www.rogers.com
Abstract

Operations, Administration, and Maintenance (OAM) is a general term that refers to a toolset for fault detection and isolation, and for performance measurement. Over the years various OAM tools have been defined for various layers in the protocol stack.

This document summarizes some of the OAM tools defined in the IETF in the context of IP unicast, MPLS, MPLS Transport Profile (MPLS-TP), pseudowires, and TRILL. This document focuses on tools for detecting and isolating failures in networks and for performance monitoring. Control and management aspects of OAM are outside the scope of this document. Network repair functions such as Fast Reroute (FRR) and protection switching, which are often triggered by OAM protocols, are also out of the scope of this document.

The target audience of this document includes network equipment vendors, network operators and standards development organizations, and can be used as an index to some of the main OAM tools defined in the IETF. This document provides a brief description of each of the OAM tools in the IETF. At the end of the document a list of the OAM toolsets and a list of the OAM functions are presented as a summary.

Status of this Memo

This Internet-Draft is submitted to IETF in full conformance with the provisions of BCP 78 and BCP 79.

Internet-Drafts are working documents of the Internet Engineering Task Force (IETF), its areas, and its working groups. Note that other groups may also distribute working documents as Internet-Drafts.
1. Introduction ... 4
 1.1. Background .. 4
 1.2. Target Audience .. 5
 1.3. OAM-related Work in the IETF 6
 1.4. Focusing on the Data Plane 7
2. Terminology .. 7
 2.1. Abbreviations ... 7
 2.2. Terminology used in OAM Standards 9
 2.2.1. General Terms 9
 2.2.2. Operations, Administration and Maintenance 9
 2.2.3. Functions, Tools and Protocols 10
 2.2.4. Data Plane, Control Plane and Management Plane ... 11
 2.2.5. The Players 12
 2.2.6. Proactive and On-demand Activation 12
 2.2.7. Connectivity Verification and Continuity Checks ... 13
 2.2.8. Connection Oriented vs. Connectionless Communication 14
 2.2.9. Point-to-point vs. Point-to-multipoint Services ... 14
2.2.10. Failures .. 15
3. OAM Functions .. 16
4. OAM Tools in the IETF - a Detailed Description 16
 4.1. IP Ping .. 17
 4.2. IP Traceroute ... 17
 4.3. Bidirectional Forwarding Detection (BFD) 18
 4.3.1. Overview ... 18
 4.3.2. Terminology 19
 4.3.3. BFD Control 19
 4.3.4. BFD Echo ... 19
 4.4. MPLS OAM .. 20
 4.4.1. LSP Ping ... 20
 4.4.2. BFD for MPLS 21
 4.4.3. OAM for Virtual Private Networks (VPN) over MPLS .. 21
 4.5. MPLS-TP OAM ... 21
 4.5.1. Overview ... 21
 4.5.2. Terminology 22
 4.5.3. Generic Associated Channel 24
 4.5.4. MPLS-TP OAM Toolset 24
 4.5.4.1. Continuity Check and Connectivity Verification 25
 4.5.4.2. Route Tracing 25
 4.5.4.3. Lock Instruct 25
 4.5.4.4. Lock Reporting 25
 4.5.4.5. Alarm Reporting 26
 4.5.4.6. Remote Defect Indication 26
 4.5.4.7. Client Failure Indication 26
 4.5.4.8. Performance Monitoring 26
 4.5.4.8.1. Packet Loss Measurement (LM) 26
 4.5.4.8.2. Packet Delay Measurement (DM) 27
 4.6. Pseudowire OAM .. 27
 4.6.1. Pseudowire OAM using Virtual Circuit Connectivity Verification (VCCV) 27
 4.6.2. Pseudowire OAM using G-ACh ... 29
 4.6.3. Attachment Circuit - Pseudowire Mapping 29
 4.7. OWAMP and TWAMP .. 29
 4.7.1. Overview .. 29
 4.7.2. Control and Test Protocols 30
 4.7.3. OWAMP ... 31
 4.7.4. TWAMP ... 31
 4.8. TRILL .. 32
 5. Summary ... 32
 5.1. Summary of OAM Tools 32
 5.2. Summary of OAM Functions 35
 5.3. Guidance to Network Equipment Vendors 36
 6. Security Considerations 36
 7. IANA Considerations .. 37
 8. Acknowledgments ... 37

1. Introduction

OAM is a general term that refers to a toolset for detecting, isolating and reporting failures and for monitoring the network performance.

There are several different interpretations to the "OAM" acronym. This document refers to Operations, Administration and Maintenance, as recommended in Section 3 of [OAM-Def].

This document summarizes some of the OAM tools defined in the IETF in the context of IP unicast, MPLS, MPLS Transport Profile (MPLS-TP), pseudowires, and TRILL.

This document focuses on tools for detecting and isolating failures and for performance monitoring. Hence, this document focuses on the tools used for monitoring and measuring the data plane; control and management aspects of OAM are outside the scope of this document. Network repair functions such as Fast Reroute (FRR) and protection switching, which are often triggered by OAM protocols, are also out of the scope of this document.

1.1. Background

OAM was originally used in traditional communication technologies such as E1 and T1, evolving into PDH and then later in SONET/SDH. ATM was probably the first technology to include inherent OAM support from day one, while in other technologies OAM was typically defined in an ad hoc manner after the technology was already defined and deployed. Packet-based networks were traditionally considered unreliable and best-effort. As packet-based networks evolved, they have become the common transport for both data and telephony, replacing traditional transport protocols. Consequently, packet-based networks were expected to provide a similar "carrier grade" experience, and specifically to support more advanced OAM functions, beyond ICMP and router hellos, that were traditionally used for fault detection.

As typical networks have a multi-layer architecture, the set of OAM protocols similarly take a multi-layer structure; each layer has its
own OAM protocols. Moreover, OAM can be used at different levels of hierarchy in the network to form a multi-layer OAM solution, as shown in the example in Figure 1.

Figure 1 illustrates a network in which IP traffic between two customer edges is transported over an MPLS provider network. MPLS OAM is used at the provider-level for monitoring the connection between the two provider edges, while IP OAM is used at the customer-level for monitoring the end-to-end connection between the two customer edges.

```
|<------------------ Customer-level OAM ----------------->|
| IP OAM (Ping, Traceroute, OWAMP, TWAMP) |
|<-- Provider-level OAM --|
| MPLS OAM (LSP Ping) |
```

+-----+ +----+ +----+ +-----+
			========================			
	-------		MPLS		IP	
	IP				-------	
+-----+ +----+ +----+ +-----+
Customer Provider Provider Customer
Edge Edge Edge

Figure 1 Example: Multi-layer OAM

1.2. Target Audience

The target audience of this document includes:

- Standards development organizations - both IETF working groups and non-IETF organizations can benefit from this document when designing new OAM protocols, or when looking to reuse existing OAM tools for new technologies.

- Network equipment vendors and network operators - can use this document as an index to some of the common IETF OAM tools.

It should be noted that some background in OAM is necessary in order to understand and benefit from this document. Specifically, the reader is assumed to be familiar with the term OAM [OAM-Def], the motivation for using OAM, and the distinction between OAM and network management [OAM-Mng].
1.3. OAM-related Work in the IETF

This memo provides an overview of the different sets of OAM tools defined by the IETF. The set of OAM tools described in this memo are applicable to IP unicast, MPLS, pseudowires, MPLS Transport Profile (MPLS-TP), and TRILL. While OAM tools that are applicable to other technologies exist, they are beyond the scope of this memo.

This document focuses on IETF documents that have been published as RFCs, while other ongoing OAM-related work is outside the scope.

The IETF has defined OAM protocols and tools in several different contexts. We roughly categorize these efforts into a few sets of OAM-related RFCs, listed in Table 1. Each set defines a logically-coupled set of RFCs, although the sets are in some cases intertwined by common tools and protocols.

The discussion in this document is ordered according to these sets (the acronyms and abbreviations are listed in Section 2.1.).

<table>
<thead>
<tr>
<th>Toolset</th>
<th>Transport Technology</th>
</tr>
</thead>
<tbody>
<tr>
<td>IP Ping</td>
<td>IPv4/IPv6</td>
</tr>
<tr>
<td>IP Traceroute</td>
<td>IPv4/IPv6</td>
</tr>
<tr>
<td>BFD</td>
<td>generic</td>
</tr>
<tr>
<td>MPLS OAM</td>
<td>MPLS</td>
</tr>
<tr>
<td>MPLS-TP OAM</td>
<td>MPLS-TP</td>
</tr>
<tr>
<td>Pseudowire OAM</td>
<td>Pseudowires</td>
</tr>
<tr>
<td>OWAMP and TWAMP</td>
<td>IPv4/IPv6</td>
</tr>
<tr>
<td>TRILL OAM</td>
<td>TRILL</td>
</tr>
</tbody>
</table>

Table 1 OAM Toolset Packages in the IETF Documents
This document focuses on OAM tools that have been developed in the IETF. A short summary of some of the significant OAM standards that have been developed in other standard organizations is presented in Appendix A.2.

1.4. Focusing on the Data Plane

OAM tools may, and quite often do, work in conjunction with a control plane and/or management plane. OAM provides instrumentation tools for measuring and monitoring the data plane. OAM tools often use control plane functions, e.g., to initialize OAM sessions and to exchange various parameters. The OAM tools communicate with the management plane to raise alarms, and often OAM tools may be activated by the management (as well as by the control plane), e.g., to locate and localize problems.

The considerations of the control plane maintenance tools and the functionality of the management plane are out of scope for this document, which concentrates on presenting the data plane tools that are used for OAM. Network repair functions such as Fast Reroute (FRR) and protection switching, which are often triggered by OAM protocols, are also out of the scope of this document.

Since OAM protocols are used for monitoring the data plane, it is imperative for OAM tools to be capable of testing the actual data plane with as much accuracy as possible. Thus, it is important to enforce fate-sharing between OAM traffic that monitors the data plane and the data plane traffic it monitors.

2. Terminology

2.1. Abbreviations

- ACH: Associated Channel Header
- AIS: Alarm Indication Signal
- ATM: Asynchronous Transfer Mode
- BFD: Bidirectional Forwarding Detection
- CC: Continuity Check
- CV: Connectivity Verification
- DM: Delay Measurement
ECMP Equal Cost Multiple Paths
FEC Forwarding Equivalence Class
FRR Fast Reroute
G-ACh Generic Associated Channel
GAL Generic Associated Label
ICMP Internet Control Message Protocol
L2TP Layer Two Tunneling Protocol
L2VPN Layer Two Virtual Private Network
L3VPN Layer Three Virtual Private Network
LCCE L2TP Control Connection Endpoint
LDP Label Distribution Protocol
LER Label Edge Router
LM Loss Measurement
LSP Label Switched Path
LSR Label Switched Router
ME Maintenance Entity
MEG Maintenance Entity Group
MEP MEG End Point
MIP MEG Intermediate Point
MP Maintenance Point
MPLS Multiprotocol Label Switching
MPLS-TP MPLS Transport Profile
MTU Maximum Transmission Unit
OAM Operations, Administration, and Maintenance
2.2. Terminology used in OAM Standards

2.2.1. General Terms

A wide variety of terms is used in various OAM standards. This section presents a comparison of the terms used in various OAM standards, without fully quoting the definition of each term.

An interesting overview of the term OAM and its derivatives is presented in [OAM-Def]. A thesaurus of terminology for MPLS-TP terms is presented in [TP-Term], and provides a good summary of some of the OAM related terminology.

2.2.2. Operations, Administration and Maintenance

The following definition of OAM is quoted from [OAM-Def]:

The components of the "OAM" acronym (and provisioning) are defined as follows:

- **Operations** - Operation activities are undertaken to keep the network (and the services that the network provides) up and running. It includes monitoring the network and finding problems. Ideally these problems should be found before users are affected.

- **Administration** - Administration activities involve keeping track of resources in the network and how they are used. It includes all the bookkeeping that is necessary to track networking resources and the network under control.

- **Maintenance** - Maintenance activities are focused on facilitating repairs and upgrades -- for example, when equipment must be replaced, when a router needs a patch for an operating system image, or when a new switch is added to a network. Maintenance also involves corrective and preventive measures to make the managed network run more effectively, e.g., adjusting device configuration and parameters.

2.2.3. Functions, Tools and Protocols

OAM Function

An OAM function is an instrumentation measurement type or diagnostic.

OAM functions are the atomic building blocks of OAM, where each function defines an OAM capability.

Typical examples of OAM functions are presented in Section 3.

OAM Protocol

A protocol used for implementing one or more OAM functions.

The OWAMP-Test [OWAMP] is an example of an OAM protocol.

OAM Tool

An OAM tool is a specific means of applying one or more OAM functions.

In some cases an OAM protocol *is* an OAM tool, e.g., OWAMP-Test. In other cases an OAM tool uses a set of protocols that are not strictly OAM-related; for example, Traceroute (Section 4.2.) can be
implemented using UDP and ICMP messages, without using an OAM protocol per se.

2.2.4. Data Plane, Control Plane and Management Plane

Data Plane

The data plane is the set of functions used to transfer data in the stratum or layer under consideration [ITU-Terms].

The Data Plane is also known as the Forwarding Plane or the User Plane.

Control Plane

The control plane is the set of protocols and mechanisms that enable routers to efficiently learn how to forward packets towards their final destination (based on [Comp]).

Management Plane

The term Management Plane, as described in [Mng], is used to describe the exchange of management messages through management protocols (often transported by IP and by IP transport protocols) between management applications and the managed entities such as network nodes.

Data Plane vs. Control Plane vs. Management Plane

The distinction between the planes is at times a bit vague. For example, the definition of "Control Plane" above may imply that OAM tools such as ping, BFD and others are in fact in the control plane.

This document focuses on tools used for monitoring the data plane. While these tools could arguably be considered to be in the control plane, these tools monitor the data plane, and hence it is imperative to have fate-sharing between OAM traffic that monitors the data plane and the data plane traffic it monitors.

Another potentially vague distinction is between the management plane and control plane. The management plane should be seen as separate from, but possibly overlapping with, the control plane (based on [Mng]).
2.2.5. The Players

An OAM tool is used between two (or more) peers. Various terms are used in IETF documents to refer to the players that take part in OAM. Table 2 summarizes the terms used in each of the toolsets discussed in this document.

<table>
<thead>
<tr>
<th>Toolset</th>
<th>Terms</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ping / Traceroute ([ICMPv4], [ICMPv6], [TCP/IP-Tools])</td>
<td>-Host</td>
</tr>
<tr>
<td></td>
<td>-Node</td>
</tr>
<tr>
<td></td>
<td>-Interface</td>
</tr>
<tr>
<td>BFD [BFD]</td>
<td>-Gateway</td>
</tr>
<tr>
<td>MPLS OAM [MPLS-OAM-FW]</td>
<td>-System</td>
</tr>
<tr>
<td>MPLS-TP OAM [TP-OAM-FW]</td>
<td>-LSR</td>
</tr>
<tr>
<td></td>
<td>-End Point - MEP</td>
</tr>
<tr>
<td></td>
<td>-Intermediate Point - MIP</td>
</tr>
<tr>
<td>Pseudowire OAM [VCCV]</td>
<td>-PE</td>
</tr>
<tr>
<td></td>
<td>-LCCE</td>
</tr>
<tr>
<td>OWAMP and TWAMP ([OWAMP], [TWAMP])</td>
<td>-Host</td>
</tr>
<tr>
<td></td>
<td>-End system</td>
</tr>
<tr>
<td>TRILL OAM [TRILL-OAM]</td>
<td>-RBridge</td>
</tr>
</tbody>
</table>

Table 2 Maintenance Point Terminology

2.2.6. Proactive and On-demand Activation

The different OAM tools may be used in one of two basic types of activation:

Proactive
Proactive activation - indicates that the tool is activated on a continual basis, where messages are sent periodically, and errors are detected when a certain number of expected messages are not received.

On-demand

On-demand activation - indicates that the tool is activated "manually" to detect a specific anomaly.

2.2.7. Connectivity Verification and Continuity Checks

Two distinct classes of failure management functions are used in OAM protocols, connectivity verification and continuity checks. The distinction between these terms is defined in [MPLS-TP-OAM], and is used similarly in this document.

Continuity Check

Continuity checks are used to verify that a destination is reachable, and are typically sent proactively, though they can be invoked on-demand as well.

Connectivity Verification

A connectivity verification function allows Alice to check whether she is connected to Bob or not. It is noted that while the CV function is performed in the data plane, the "expected path" is predetermined either in the control plane or in the management plane. A connectivity verification (CV) protocol typically uses a CV message, followed by a CV reply that is sent back to the originator. A CV function can be applied proactively or on-demand.

Connectivity verification tools often perform path verification as well, allowing Alice to verify that messages from Bob are received through the correct path, thereby verifying not only that the two MPs are connected, but also that they are connected through the expected path, allowing detection of unexpected topology changes.

Connectivity verification functions can also be used for checking the MTU of the path between the two peers.

Connectivity verification and continuity checks are considered complementary mechanisms, and are often used in conjunction with each other.
2.2.8. Connection Oriented vs. Connectionless Communication

Connection Oriented

In Connection Oriented technologies an end-to-end connection is established (by a control protocol or provisioned by a management system) prior to the transmission of data.

Typically a connection identifier is used to identify the connection. In connection oriented technologies it is often the case (although not always) that all packets belonging to a specific connection use the same route through the network.

Connectionless

In Connectionless technologies data is typically sent between end points without prior arrangement. Packets are routed independently based on their destination address, and hence different packets may be routed in a different way across the network.

Discussion

The OAM tools described in this document include tools that support connection oriented technologies, as well as tools for connectionless technologies.

In connection oriented technologies OAM is used to monitor a *specific* connection; OAM packets are forwarded through the same route as the data traffic and receive the same treatment. In connectionless technologies, OAM is used between a source and destination pair without defining a specific connection. Moreover, in some cases the route of OAM packets may differ from the one of the data traffic. For example, the connectionless IP Ping (Section 4.1.) tests the reachability from a source to a given destination, while the connection oriented LSP Ping (Section 4.4.) is used for monitoring a specific LSP (connection), and provides the capability to monitor all the available paths used by an LSP.

It should be noted that in some cases connectionless protocols are monitored by connection oriented OAM protocols. For example, while IP is a connectionless protocol, it can monitored by BFD (Section 4.3.), which is connection oriented.

2.2.9. Point-to-point vs. Point-to-multipoint Services

Point-to-point (P2P)
A P2P service delivers data from a single source to a single destination.

Point-to-multipoint (P2MP)

A P2MP service delivers data from a single source to a one or more destinations (based on [Signal]).

An MP2MP service is a service that delivers data from more than one source to one or more receivers (based on [Signal]).

Note: the two definitions for P2MP and MP2MP are quoted from [Signal]. Although [Signal] describes a specific case of P2MP and MP2MP which is MPLS-specific, these two definitions also apply to non-MPLS cases.

Discussion

The OAM tools described in this document include tools for P2P services, as well as tools for P2MP services.

The distinction between P2P services and P2MP services affects the corresponding OAM tools. A P2P service is typically simpler to monitor, as it consists of a single pair of end points. P2MP and MP2MP services present several challenges. For example, in a P2MP service, the OAM mechanism not only verifies that each of the destinations is reachable from the source, but also verifies that the P2MP distribution tree is intact and loop-free.

2.2.10. Failures

The terms Failure, Fault, and Defect are used interchangeably in the standards, referring to a malfunction that can be detected by a connectivity or a continuity check. In some standards, such as 802.1aq [IEEE802.1Q], there is no distinction between these terms, while in other standards each of these terms refers to a different type of malfunction.

The terminology used in IETF MPLS-TP OAM is based on the ITU-T terminology, which distinguishes between these three terms in [ITU-T-G.806];

Fault

The term Fault refers to an inability to perform a required action, e.g., an unsuccessful attempt to deliver a packet.
Defect

The term Defect refers to an interruption in the normal operation, such as a consecutive period of time where no packets are delivered successfully.

Failure

The term Failure refers to the termination of the required function. While a Defect typically refers to a limited period of time, a failure refers to a long period of time.

3. OAM Functions

This subsection provides a brief summary of the common OAM functions used in OAM-related standards. These functions are used as building blocks in the OAM standards described in this document.

- Connectivity Verification (CV), Path Verification and Continuity Checks (CC):
 As defined in Section 2.2.7.

- Path Discovery / Fault Localization:
 This function can be used to trace the route to a destination, i.e., to identify the nodes along the route to the destination. When more than one route is available to a specific destination, this function traces one of the available routes. When a failure occurs, this function attempts to detect the location of the failure.
 Note that the term route tracing (or Traceroute) that is used in the context of IP and MPLS, is sometimes referred to as path tracing in the context of other protocols, such as TRILL.

- Performance Monitoring:
 Typically refers to:
 - Loss Measurement (LM) - monitors the packet loss rate.
 - Delay Measurement (DM) - monitors the delay and delay variation (jitter).

4. OAM Tools in the IETF - a Detailed Description

This section presents a detailed description of the sets of OAM-related tools in each of the toolsets in Table 1.
4.1. IP Ping

Ping is a common network diagnosis application for IP networks that uses ICMP. According to [NetTerms], 'Ping' is an abbreviation for Packet internet groper, although the term has been so commonly used that it stands on its own. As defined in [NetTerms], it is a program used to test reachability of destinations by sending them an ICMP echo request and waiting for a reply.

The ICMP Echo request/reply exchange in Ping is used as a continuity check function for the Internet Protocol. The originator transmits an ICMP Echo request packet, and the receiver replies with an Echo reply. ICMP ping is defined in two variants, [ICMPv4] is used for IPv4, and [ICMPv6] is used for IPv6.

Ping can be invoked either to a unicast destination or to a multicast destination. In the latter case, all members of the multicast group send an Echo reply back to the originator.

Ping implementations typically use ICMP messages. UDP Ping is a variant that uses UDP messages instead of ICMP echo messages.

Ping is a single-ended continuity check, i.e., it allows the *initiator* of the Echo request to test the reachability. If it is desirable for both ends to test the reachability, both ends have to invoke Ping independently.

Note that since ICMP filtering is deployed in some routers and firewalls, the usefulness of Ping is sometimes limited in the wider internet. This limitation is equally relevant to Traceroute.

4.2. IP Traceroute

Traceroute ([TCPIP-Tools], [NetTools]) is an application that allows users to discover a path between an IP source and an IP destination.

The most common way to implement Traceroute [TCPIP-Tools] is described as follows. Traceroute sends a sequence of UDP packets to UDP port 33434 at the destination. By default, Traceroute begins by sending three packets (the number of packets is configurable in most Traceroute implementations), each with an IP Time-To-Live (or Hop Limit in IPv6) value of one to the destination. These packets expire as soon as they reach the first router in the path. Consequently, that router sends three ICMP Time Exceeded Messages back to the Traceroute application. Traceroute now sends another three UDP packets, each with the TTL value of 2. These messages cause the second router to return ICMP messages. This process continues, with
ever increasing values for the TTL field, until the packets actually reach the destination. Because no application listens to port 33434 at the destination, the destination returns ICMP Destination Unreachable Messages indicating an unreachable port. This event indicates to the Traceroute application that it is finished. The Traceroute program displays the round-trip delay associated with each of the attempts.

While Traceroute is a tool that finds *a* path from A to B, it should be noted that traffic from A to B is often forwarded through Equal Cost Multiple Paths (ECMP). Paris Traceroute [PARIS] is an extension to Traceroute that attempts to discovers all the available paths from A to B by scanning different values of header fields (such as UDP ports) in the probe packets.

It is noted that Traceroute is an application, and not a protocol. As such, it has various different implementations. One of the most common ones uses UDP probe packets, as described above. Other implementations exist that use other types of probe messages, such as ICMP or TCP.

Note that IP routing may be asymmetric. While Traceroute discovers a path between a source and destination, it does not reveal the reverse path.

A few ICMP extensions ([ICMP-MP], [ICMP-Int]) have been defined in the context of Traceroute. These documents define several extensions, including extensions to the ICMP Destination Unreachable message, that can be used by Traceroute applications.

Traceroute allows path discovery to *unicast* destination addresses. A similar tool [mtrace] was defined for multicast destination addresses, allowing to trace the route that a multicast IP packet takes from a source to a particular receiver.

4.3. Bidirectional Forwarding Detection (BFD)

4.3.1. Overview

While multiple OAM tools have been defined for various protocols in the protocol stack, Bidirectional Forwarding Detection [BFD], defined by the IETF BFD working group, is a generic OAM tool that can be deployed over various encapsulating protocols, and in various medium types. The IETF has defined variants of the protocol for IP ([BFD-IP], [BFD-Multi]), for MPLS LSPs [BFD-LSP], and for pseudowires [BFD-VCCV]. The usage of BFD in MPLS-TP is defined in [TP-CC-CV].
BFD includes two main OAM functions, using two types of BFD packets: BFD Control packets, and BFD Echo packets.

4.3.2. Terminology

BFD operates between *systems*. The BFD protocol is run between two or more systems after establishing a *session*.

4.3.3. BFD Control

BFD supports a bidirectional continuity check, using BFD control packets, that are exchanged within a BFD session. BFD sessions operate in one of two modes:

- **Asynchronous mode** (i.e., proactive): in this mode BFD control packets are sent periodically. When the receiver detects that no BFD control packets have been received during a predetermined period of time, a failure is reported.

- **Demand mode**: in this mode, BFD control packets are sent on-demand. Upon need, a system initiates a series of BFD control packets to check the continuity of the session. BFD control packets are sent independently in each direction.

Each of the end-points (referred to as systems) of the monitored path maintains its own session identification, called a Discriminator, both of which are included in the BFD Control Packets that are exchanged between the end-points. At the time of session establishment, the Discriminators are exchanged between the two-end points. In addition, the transmission (and reception) rate is negotiated between the two end-points, based on information included in the control packets. These transmission rates may be renegotiated during the session.

During normal operation of the session, i.e., when no failures have been detected, the BFD session is in the Up state. If no BFD Control packets are received during a period of time called the Detection Time, the session is declared to be Down. The detection time is a function of the pre-configured or negotiated transmission rate, and a parameter called Detect Mult. Detect Mult determines the number of missing BFD Control packets that cause the session to be declared as Down. This parameter is included in the BFD Control packet.

4.3.4. BFD Echo

A BFD echo packet is sent to a peer system, and is looped back to the originator. The echo function can be used proactively, or on-demand.
The BFD echo function has been defined in BFD for IPv4 and IPv6 ([BFD-IP]), but is not used in BFD for MPLS LSPs, PWs, or in BFD for MPLS-TP.

4.4. MPLS OAM

The IETF MPLS working group has defined OAM for MPLS LSPs. The requirements and framework of this effort are defined in [MPLS-OAM-FW] and [MPLS-OAM], respectively. The corresponding OAM tool defined, in this context, is LSP Ping [LSP-Ping]. OAM for P2MP services is defined in [MPLS-P2MP].

BFD for MPLS [BFD-LSP] is an alternative means for detecting data-plane failures, as described below.

4.4.1. LSP Ping

LSP Ping is modeled after the Ping/Traceroute paradigm and thus it may be used in one of two modes:

- "Ping" mode: In this mode LSP Ping is used for end-to-end connectivity verification between two LERs.
- "Traceroute" mode: This mode is used for hop-by-hop fault isolation.

LSP Ping is based on ICMP Ping operation (of data-plane connectivity verification) with additional functionality to verify data-plane vs. control-plane consistency for a Forwarding Equivalence Class (FEC) and also identify Maximum Transmission Unit (MTU) problems.

The Traceroute functionality may be used to isolate and localize MPLS faults, using the Time-to-live (TTL) indicator to incrementally identify the sub-path of the LSP that is successfully traversed before the faulty link or node.

The challenge in MPLS networks is that the traffic of a given LSP may be load balanced across Equal Cost Multiple paths (ECMP). LSP Ping monitors all the available paths of an LSP by monitoring its different Forwarding Equivalence Classes (FEC). Note that MPLS-TP does not use ECMP, and thus does not require OAM over multiple paths.

Another challenge is that an MPLS LSP does not necessarily have a return path; traffic that is sent back from the egress LSR to the ingress LSR is not necessarily sent over an MPLS LSP, but can be sent through a different route, such as an IP route. Thus, responding to an LSP Ping message is not necessarily as trivial as in IP Ping.
where the responder just swaps the source and destination IP addresses. Note that this challenge is not applicable to MPLS-TP, where a return path is always available.

It should be noted that LSP Ping supports unique identification of the LSP within an addressing domain. The identification is checked using the full FEC identification. LSP Ping is extensible to include additional information needed to support new functionality, by use of Type-Length-Value (TLV) constructs. The usage of TLVs is typically handled by the control plane, as it is not easy to implement in hardware.

LSP Ping supports both asynchronous, as well as, on-demand activation.

4.4.2. BFD for MPLS

BFD [BFD-LSP] can be used to detect MPLS LSP data plane failures.

A BFD session is established for each MPLS LSP that is being monitored. BFD Control packets must be sent along the same path as the monitored LSP. If the LSP is associated with multiple FECs, a BFD session is established for each FEC.

While LSP Ping can be used for detecting MPLS data plane failures and for verifying the MPLS LSP data plane against the control plane, BFD can only be used for the former. BFD can be used in conjunction with LSP Ping, as is the case in MPLS-TP (see Section 4.5.4.).

4.4.3. OAM for Virtual Private Networks (VPN) over MPLS

The IETF has defined two classes of VPNs, Layer 2 VPNs (L2VPN) and Layer 3 VPNs (L3VPN). [L2VPN-OAM] provides the requirements and framework for OAM in the context of Layer 2 Virtual Private Networks (L2VPNs), and specifically it also defines the OAM layering of L2VPNs over MPLS. [L3VPN-OAM] provides a framework for the operation and management of Layer 3 Virtual Private Networks (L3VPNs).

4.5. MPLS-TP OAM

4.5.1. Overview

The MPLS working group has defined the OAM toolset that fulfills the requirements for MPLS-TP OAM. The full set of requirements for MPLS-TP OAM are defined in [MPLS-TP-OAM], and include both general requirements for the behavior of the OAM tools and a set of operations that should be supported by the OAM toolset. The set of
mechanisms required are further elaborated in [TP-OAM-FW], which
describes the general architecture of the OAM system as well as
giving overviews of the functionality of the OAM toolset.

Some of the basic requirements for the OAM toolset for MPLS-TP are:

- MPLS-TP OAM must be able to support both an IP based and non-IP
 based environment. If the network is IP based, i.e., IP routing and
 forwarding are available, then the MPLS-TP OAM toolset should
 rely on the IP routing and forwarding capabilities. On the other
 hand, in environments where IP functionality is not available, the
 OAM tools must still be able to operate without dependence on IP
 forwarding and routing.

- OAM packets and the user traffic are required to be congruent
 (i.e., OAM packets are transmitted in-band) and there is a need to
 differentiate OAM packets from ordinary user packets in the data
 plane. Inherent in this requirement is the principle that MPLS-TP
 OAM be independent of any existing control-plane, although it
 should not preclude use of the control-plane functionality.
 OAM packets are identified by the Generic Associated Label (GAL),
 which is a reserved MPLS label value (13).

4.5.2. Terminology

Maintenance Entity (ME)

The MPLS-TP OAM tools are designed to monitor and manage a
Maintenance Entity (ME). An ME, as defined in [TP-OAM-FW], defines a
relationship between two points of a transport path to which
maintenance and monitoring operations apply.

The term Maintenance Entity (ME) is used in ITU-T Recommendations
(e.g., [ITU-T-Y1731]), as well as in the MPLS-TP terminology
([TP-OAM-FW]).

Maintenance Entity Group (MEG)

The collection of one or more MEs that belongs to the same transport
path and that are maintained and monitored as a group are known as a
Maintenance Entity Group (based on [TP-OAM-FW]).

Maintenance Point (MP)

A Maintenance Point (MP) is a functional entity that is defined at a
node in the network, and can initiate and/or react to OAM messages.
This document focuses on the data-plane functionality of MPs, while
MPs interact with the control plane and with the management plane as well.

The term MP is used in IEEE 802.1ag, and was similarly adopted in MPLS-TP ([TP-OAM-FW]).

Maintenance End Point (MEP)

A Maintenance End Point (MEP) is one of the end points of an ME, and can initiate OAM messages and respond to them (based on [TP-OAM-FW]).

Maintenance Intermediate Point (MIP)

In between MEPs, there are zero or more intermediate points, called Maintenance Entity Group Intermediate Points (based on [TP-OAM-FW]).

A Maintenance Intermediate Point (MIP) is an intermediate point that does not generally initiate OAM frames (one exception to this is the use of AIS notifications), but is able to respond to OAM frames that are destined to it. A MIP in MPLS-TP identifies OAM packets destined to it by the expiration of the TTL field in the OAM packet. The term Maintenance Point is a general term for MEPs and MIPs.

Up and Down MEPs

The IEEE 802.1ag [IEEE802.1Q] defines a distinction between Up MEPs and Down MEPs. A MEP monitors traffic either in the direction facing the network, or in the direction facing the bridge. A Down MEP is a MEP that receives OAM packets from, and transmits them to the direction of the network. An Up MEP receives OAM packets from, and transmits them to the direction of the bridging entity. MPLS-TP ([TP-OAM-FW]) uses a similar distinction on the placement of the MEP — either at the ingress, egress, or forwarding function of the node (Down / Up MEPs). This placement is important for localization of a failure.

Note that the terms Up and Down MEPs are entirely unrelated to the conventional up/down terminology, where down means faulty, and up is nonfaulty.

The distinction between Up and Down MEPs was defined in [TP-OAM-FW], but has not been used in other MPLS-TP RFCs, as of the writing of this document.
4.5.3. Generic Associated Channel

In order to address the requirement for in-band transmission of MPLS-TP OAM traffic, MPLS-TP uses a Generic Associated Channel (G-ACh), defined in [G-ACh] for LSP-based OAM traffic. This mechanism is based on the same concepts as the PWE3 ACH [PW-ACH] and VCCV [VCCV] mechanisms. However, to address the needs of LSPs as differentiated from PW, the following concepts were defined for [G-ACh]:

- A Generic Associated Channel Header (ACH), that uses a format similar to the PW Control Word [PW-ACH], is a 4-byte header that is prepended to OAM packets.
- A Generic Associated Label (GAL). The GAL is a reserved MPLS label value (13) that indicates that the packet is an ACH packet and the payload follows immediately after the label stack.

It should be noted that while the G-ACh was defined as part of the MPLS-TP definition effort, the G-ACh is a generic tool that can be used in MPLS in general, and not only in MPLS-TP.

4.5.4. MPLS-TP OAM Toolset

To address the functionality that is required of the OAM toolset, the MPLS WG conducted an analysis of the existing IETF and ITU-T OAM tools and their ability to fulfill the required functionality. The conclusions of this analysis are documented in [OAM-Analys]. MPLS-TP uses a mixture of OAM tools that are based on previous standards, and adapted to the requirements of [MPLS-TP-OAM]. Some of the main building blocks of this solution are based on:

- Bidirectional Forwarding Detection ([BFD], [BFD-LSP]) for proactive continuity check and connectivity verification.
- LSP Ping as defined in [LSP-Ping] for on-demand connectivity verification.
- New protocol packets, using G-ACh, to address different functionality.
- Performance measurement protocols that are based on the functionality that is described in [ITU-T-Y1731].

The following sub-sections describe the OAM tools defined for MPLS-TP as described in [TP-OAM-FW].
4.5.4.1. Continuity Check and Connectivity Verification

Continuity Check and Connectivity Verification are presented in Section 2.2.7. of this document. As presented there, these tools may be used either proactively or on-demand. When using these tools proactively, they are generally used in tandem.

For MPLS-TP there are two distinct tools, the proactive tool is defined in [TP-CC-CV] while the on-demand tool is defined in [OnDemand-CV]. In on-demand mode, this function should support monitoring between the MEPs and, in addition, between a MEP and MIP. [TP-OAM-FW] highlights, when performing Connectivity Verification, the need for the CC-V messages to include unique identification of the MEG that is being monitored and the MEP that originated the message.

The proactive tool [TP-CC-CV] is based on extensions to BFD (see Section 4.3.) with the additional limitation that the transmission and receiving rates are based on configuration by the operator. The on-demand tool [OnDemand-CV] is an adaptation of LSP Ping (see Section 4.4.) for the required behavior of MPLS-TP.

4.5.4.2. Route Tracing

[MPLS-TP-OAM] defines that there is a need for functionality that would allow a path end-point to identify the intermediate and end-points of the path. This function would be used in on-demand mode. Normally, this path will be used for bidirectional PW, LSP, and sections, however, unidirectional paths may be supported only if a return path exists. The tool for this is based on the LSP Ping (see Section 4.4.) functionality and is described in [OnDemand-CV].

4.5.4.3. Lock Instruct

The Lock Instruct function [Lock-Loop] is used to notify a transport path end-point of an administrative need to disable the transport path. This functionality will generally be used in conjunction with some intrusive OAM function, e.g., Performance measurement, Diagnostic testing, to minimize the side-effect on user data traffic.

4.5.4.4. Lock Reporting

Lock Reporting is a function used by an end-point of a path to report to its far-end end-point that a lock condition has been affected on the path.
4.5.4.5. Alarm Reporting

Alarm Reporting [TP-Fault] provides the means to suppress alarms following detection of defect conditions at the server sub-layer. Alarm reporting is used by an intermediate point of a path, that becomes aware of a fault on the path, to report to the end-points of the path. [TP-OAM-FW] states that this may occur as a result of a defect condition discovered at a server sub-layer. This generates an Alarm Indication Signal (AIS) that continues until the fault is cleared. The consequent action of this function is detailed in [TP-OAM-FW].

4.5.4.6. Remote Defect Indication

Remote Defect Indication (RDI) is used proactively by a path end-point to report to its peer end-point that a defect is detected on a bidirectional connection between them. [MPLS-TP-OAM] points out that this function may be applied to a unidirectional LSP only if a return path exists. [TP-OAM-FW] points out that this function is associated with the proactive CC-V function.

4.5.4.7. Client Failure Indication

Client Failure Indication (CFI) is defined in [MPLS-TP-OAM] to allow the propagation information from one edge of the network to the other. The information concerns a defect to a client, in the case that the client does not support alarm notification.

4.5.4.8. Performance Monitoring

The definition of MPLS performance monitoring was motivated by the MPLS-TP requirements [MPLS-TP-OAM], but was defined generically for MPLS in [MPLS-LM-DM]. An additional document [TP-LM-DM] defines a performance monitoring profile for MPLS-TP.

4.5.4.8.1. Packet Loss Measurement (LM)

Packet Loss Measurement is a function used to verify the quality of the service. Packet loss, as defined in [IPPM-1LM] and [MPLS-TP-OAM], indicates the ratio of the number of user packets lost to the total number of user packets sent during a defined time interval.

There are two possible ways of determining this measurement:
Using OAM packets, it is possible to compute the statistics based on a series of OAM packets. This, however, has the disadvantage of being artificial, and may not be representative since part of the packet loss may be dependent upon packet sizes and upon the implementation of the MEPs that take part in the protocol.

Sending delimiting messages for the start and end of a measurement period during which the source and sink of the path count the packets transmitted and received. After the end delimiter, the ratio would be calculated by the path OAM entity.

4.5.4.8.2. Packet Delay Measurement (DM)

Packet Delay Measurement is a function that is used to measure one-way or two-way delay of a packet transmission between a pair of the end-points of a path (PW, LSP, or Section). Where:

- One-way packet delay, as defined in [IPPM-1DM], is the time elapsed from the start of transmission of the first bit of the packet by a source node until the reception of the last bit of that packet by the destination node. Note that one-way delay measurement requires the clocks of the two end-points to be synchronized.

- Two-way packet delay, as defined in [IPPM-2DM], is the time elapsed from the start of transmission of the first bit of the packet by a source node until the reception of the last bit of the loop-backed packet by the same source node, when the loopback is performed at the packet’s destination node. Note that due to possible path asymmetry, the one-way packet delay from one end-point to another is not necessarily equal to half of the two-way packet delay.
 As opposed to one-way delay measurement, two-way delay measurement does not require the two end-points to be synchronized.

For each of these two metrics, the DM function allows the MEP to measure the delay, as well as the delay variation. Delay measurement is performed by exchanging timestamped OAM packets between the participating MEPs.

4.6. Pseudowire OAM

4.6.1. Pseudowire OAM using Virtual Circuit Connectivity Verification (VCCV)

VCCV, as defined in [VCCV], provides a means for end-to-end fault detection and diagnostics tools to be used for PWs (regardless of the
The VCCV switching function provides a control channel associated with each PW. [VCCV] defines three Control Channel (CC) types, i.e., three possible methods for transmitting and identifying OAM messages:

- **CC Type 1:** In-band VCCV, as described in [VCCV], is also referred to as "PWE3 Control Word with 0001b as first nibble". It uses the PW Associated Channel Header [PW-ACH].

- **CC Type 2:** Out-of-band VCCV [VCCV], is also referred to as "MPLS Router Alert Label". In this case the control channel is created by using the MPLS router alert label [MPLS-ENCAPS] immediately above the PW label.

- **CC Type 3:** TTL expiry VCCV [VCCV], is also referred to as "MPLS PW Label with TTL == 1", i.e., the control channel is identified when the value of the TTL field in the PW label is set to 1.

VCCV currently supports the following OAM tools: ICMP Ping, LSP Ping, and BFD. ICMP and LSP Ping are IP encapsulated before being sent over the PW ACH. BFD for VCCV [BFD-VCCV] supports two modes of encapsulation – either IP/UDP encapsulated (with IP/UDP header) or PW-ACH encapsulated (with no IP/UDP header) and provides support to signal the AC status. The use of the VCCV control channel provides the context, based on the MPLS-PW label, required to bind and bootstrap the BFD session to a particular pseudo wire (FEC), eliminating the need to exchange Discriminator values.

VCCV consists of two components: (1) signaled component to communicate VCCV capabilities as part of VC label, and (2) switching component to cause the PW payload to be treated as a control packet.

VCCV is not directly dependent upon the presence of a control plane. The VCCV capability advertisement may be performed as part of the PW signaling when LDP is used. In case of manual configuration of the PW, it is the responsibility of the operator to set consistent options at both ends. The manual option was created specifically to handle MPLS-TP use cases where no control plane was a requirement. However, new use cases such as pure mobile backhaul find this functionality useful too.

The PWE3 working group has conducted an implementation survey of VCCV [VCCV-SURVEY], which analyzes which VCCV mechanisms are used in practice.
4.6.2. Pseudowire OAM using G-ACh

As mentioned above, VCCV enables OAM for PWs by using a control channel for OAM packets. When PWs are used in MPLS-TP networks, rather than the control channels defined in VCCV, the G-ACh can be used as an alternative control channel. The usage of the G-ACh for PWs is defined in [PW-G-ACh].

4.6.3. Attachment Circuit - Pseudowire Mapping

The PWE3 working group has defined a mapping and notification of defect states between a pseudowire (PW) and the Attachment Circuits (ACs) of the end-to-end emulated service. This mapping is of key importance to the end-to-end functionality. Specifically, the mapping is provided by [PW-MAP], by [L2TP-EC] for L2TPv3 pseudowires, and Section 5.3 of [ATM-L2] for ATM.

[L2VPN-OAM] provides the requirements and framework for OAM in the context of Layer 2 Virtual Private Networks (L2VPN), and specifically it also defines the OAM layering of L2VPNs over pseudowires.

The mapping defined in [Eth-Int] allows an end-to-end emulated Ethernet service over pseudowires.

4.7. OWAMP and TWAMP

4.7.1. Overview

The IPPM working group in the IETF defines common criteria and metrics for measuring performance of IP traffic ([IPPM-FW]). Some of the key RFCs published by this working group have defined metrics for measuring connectivity ([IPPM-Con]), delay ([IPPM-1DM], [IPPM-2DM]), and packet loss ([IPPM-1LM]). It should be noted that the work of the IETF in the context of performance metrics is not limited to IP networks; [PM-CONS] presents general guidelines for considering new performance metrics.

The IPPM working group has defined not only metrics for performance measurement, but also protocols that define how the measurement is carried out. The One-way Active Measurement Protocol (OWAMP) and the Two-Way Active Measurement Protocol (TWAMP) define a method and protocol for measuring performance metrics in IP networks.

OWAMP (OWAMP) enables measurement of one-way characteristics of IP networks, such as one-way packet loss and one-way delay. For its proper operation OWAMP requires accurate time of day setting at its end points.
TWAMP [TWAMP] is a similar protocol that enables measurement of both one-way and two-way (round trip) characteristics.

OWAMP and TWAMP are both comprised of two separate protocols:

- OWAMP-Control/TWAMP-Control: used to initiate, start, and stop test sessions and to fetch their results. Continuity Check and Connectivity Verification are tested and confirmed by establishing the OWAMP/TWAMP Control Protocol TCP connection.

- OWAMP-Test/TWAMP-Test: used to exchange test packets between two measurement nodes. Enables the loss and delay measurement functions, as well as detection of other anomalies, such as packet duplication and packet reordering.

It should be noted that while [OWAMP] and [TWAMP] define tools for performance measurement, they do not define the accuracy of these tools. The accuracy depends on scale, implementation and network configurations.

Alternative protocols for performance monitoring are defined, for example, in MPLS-TP OAM ([MPLS-LM-DM], [TP-LM-DM]), and in Ethernet OAM [ITU-T-Y1731].

4.7.2. Control and Test Protocols

OWAMP and TWAMP control protocols run over TCP, while the test protocols run over UDP. The purpose of the control protocols is to initiate, start, and stop test sessions, and for OWAMP to fetch results. The test protocols introduce test packets (which contain sequence numbers and timestamps) along the IP path under test according to a schedule, and record statistics of packet arrival. Multiple sessions may be simultaneously defined, each with a session identifier, and defining the number of packets to be sent, the amount of padding to be added (and thus the packet size), the start time, and the send schedule (which can be either a constant time between test packets or exponentially distributed pseudo-random). Statistics recorded conform to the relevant IPPM RFCs.

From a security perspective, OWAMP and TWAMP test packets are hard to detect because they are simply UDP streams between negotiated port numbers, with potentially nothing static in the packets. OWAMP and TWAMP also include optional authentication and encryption for both control and test packets.
4.7.3. OWAMP

OWAMP defines the following logical roles: Session-Sender, Session-Receiver, Server, Control-Client, and Fetch-Client. The Session-Sender originates test traffic that is received by the Session-Receiver. The Server configures and manages the session, as well as returning the results. The Control-Client initiates requests for test sessions, triggers their start, and may trigger their termination. The Fetch-Client requests the results of a completed session. Multiple roles may be combined in a single host - for example, one host may play the roles of Control-Client, Fetch-Client, and Session-Sender, and a second playing the roles of Server and Session-Receiver.

In a typical OWAMP session the Control-Client establishes a TCP connection to port 861 of the Server, which responds with a server greeting message indicating supported security/integrity modes. The Control-Client responds with the chosen communications mode and the Server accepts the mode. The Control-Client then requests and fully describes a test session to which the Server responds with its acceptance and supporting information. More than one test session may be requested with additional messages. The Control-Client then starts a test session and the Server acknowledges, and instructs the Session-Sender to start the test. The Session-Sender then sends test packets with pseudorandom padding to the Session-Receiver until the session is complete or until the Control-client stops the session. Once finished, the Session-Sender reports to the Server which recovers data from the Session-Receiver. The Fetch-Client can then send a fetch request to the Server, which responds with an acknowledgement and immediately thereafter the result data.

4.7.4. TWAMP

TWAMP defines the following logical roles: session-sender, session-reflector, server, and control-client. These are similar to the OWAMP roles, except that the Session-Reflector does not collect any packet information, and there is no need for a Fetch-Client.

In a typical TWAMP session the Control-Client establishes a TCP connection to port 862 of the Server, and mode is negotiated as in OWAMP. The Control-Client then requests sessions and starts them. The Session-Sender sends test packets with pseudorandom padding to the Session-Reflector which returns them with insertion of timestamps.
4.8. TRILL

The requirements of OAM in TRILL are defined in [TRILL-OAM]. The challenge in TRILL OAM, much like in MPLS networks, is that traffic between RBridges RB1 and RB2 may be forwarded through more than one path. Thus, an OAM protocol between RBridges RB1 and RB2 must be able to monitor all the available paths between the two RBridge.

During the writing of this document the detailed definition of the TRILL OAM tools are still work in progress. This subsection presents the main requirements of TRILL OAM.

The main requirements defined in [TRILL-OAM] are:

- Continuity Checking (CC) - the TRILL OAM protocol must support a function for CC between any two RBridges RB1 and RB2.
- Connectivity Verification (CV) - connectivity between two RBridges RB1 and RB2 can be verified on a per-flow basis.
- Path Tracing - allows an RBridge to trace all the available paths to a peer RBridge.
- Performance monitoring - allows an RBridge to monitor the packet loss and packet delay to a peer RBridge.

5. Summary

This section summarizes the OAM tools and functions presented in this document. This summary is an index to some of the main OAM tools defined in the IETF. This compact index that can be useful to all readers from network operators to standards development organizations. The summary includes a short subsection that presents some guidance to network equipment vendors.

5.1. Summary of OAM Tools

This subsection provides a short summary of each of the OAM toolsets described in this document.

A detailed list of the RFCs related to each toolset is given in Appendix A.1.
<table>
<thead>
<tr>
<th>IP Ping</th>
<th>Ping ([IntHost], [NetTerms]) is a simple application for testing reachability that uses ICMP Echo messages ([ICMPv4], [ICMPv6]).</th>
<th>IPv4/IPv6</th>
</tr>
</thead>
<tbody>
<tr>
<td>IP Traceroute</td>
<td>Traceroute ([TCPIP-Tools], [NetTools]) is an application that allows users to trace the path between an IP source and an IP destination, i.e., to identify the nodes along the path. If more than one path exists between the source and destination Traceroute traces a path. The most common implementation of Traceroute uses UDP probe messages, although there are other implementations that use different probes, such as ICMP or TCP. Paris Traceroute [PARIS] is an extension that attempts to discover all the available paths from A to B by scanning different values of header fields.</td>
<td>IPv4/IPv6</td>
</tr>
<tr>
<td>BFD</td>
<td>Bidirectional Forwarding Detection (BFD) is defined in [BFD] as a framework for a lightweight generic OAM tool. The intention is to define a base tool that can be used with various encapsulation types, network environments, and in various medium types.</td>
<td>generic</td>
</tr>
<tr>
<td>MPLS OAM</td>
<td>MPLS LSP Ping, as defined in [MPLS-OAM], [MPLS-OAM-FW] and [LSP-Ping], is an OAM tool for point-to-point and point-to-multipoint MLPS LSPs. It includes two main functions: Ping and Traceroute. BFD [BFD-LSP] is an alternative means for detecting MPLS LSP data plane failures.</td>
<td>MPLS</td>
</tr>
<tr>
<td>MPLS-TP OAM</td>
<td>MPLS-TP OAM is defined in a set of RFCs.</td>
<td>MPLS-TP</td>
</tr>
</tbody>
</table>
The OAM requirements for MPLS Transport Profile (MPLS-TP) are defined in [MPLS-TP-OAM]. Each of the tools in the OAM toolset is defined in its own RFC, as specified in Section A.1.

Pseudowire OAM

The PWE3 OAM architecture defines control channels that support the use of existing IETF OAM tools to be used for a pseudowire (PW). The control channels that are defined in [VCCV] and [PW-G-ACh] may be used in conjunction with ICMP Ping, LSP Ping, and BFD to perform CC and CV functionality. In addition the channels support use of any of the MPLS-TP based OAM tools for completing their respective OAM functionality for a PW.

OWAMP and TWAMP

The One Way Active Measurement Protocol [OWAMP] and the Two Way Active Measurement Protocols [TWAMP] are two protocols defined in the IP Performance Metrics (IPPM) working group in the IETF. These protocols allow various performance metrics to be measured, such as packet loss, delay and delay variation, duplication and reordering.

TRILL OAM

The requirements of OAM in TRILL are defined in [TRILL-OAM]. These requirements include continuity checking, connectivity verification, path tracing and performance monitoring. During the writing of this document the detailed definition of the TRILL OAM tools is work in progress.

Table 3 Summary of OAM-related IETF Tools
5.2. Summary of OAM Functions

Table 4 summarizes the OAM functions that are supported in each of the toolsets that were analyzed in this section. The columns of this tables are the typical OAM functions described in Section 1.3.

<table>
<thead>
<tr>
<th>Toolset</th>
<th>Continuity Check</th>
<th>Connectivity Verification</th>
<th>Path Discovery</th>
<th>Performance Monitoring</th>
<th>Other Functions</th>
</tr>
</thead>
<tbody>
<tr>
<td>IP Ping</td>
<td>Echo</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IP Traceroute</td>
<td>BFD Control/Echo</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BFD</td>
<td>BFD Control</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MPLS OAM (LSP Ping)</td>
<td>"Ping" mode</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MPLS-TP OAM</td>
<td>CC</td>
<td>CV/pro-active or on-demand</td>
<td>Route Tracing</td>
<td>-LM</td>
<td>-Diagnostic Test</td>
</tr>
<tr>
<td>Pseudowire OAM</td>
<td>BFD</td>
<td>-BFD</td>
<td>LSP-Ping</td>
<td></td>
<td>-Lock</td>
</tr>
<tr>
<td>OWAMP and</td>
<td>- control</td>
<td></td>
<td></td>
<td></td>
<td>-Alarm</td>
</tr>
</tbody>
</table>

Table 4 Summary of the OAM Functionality in IETF OAM Tools

<table>
<thead>
<tr>
<th>Tool</th>
<th>Protocol</th>
<th>Measurement</th>
<th>Feature</th>
</tr>
</thead>
<tbody>
<tr>
<td>TWAMP</td>
<td>protocol</td>
<td>measur</td>
<td>-Packet loss</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ement</td>
<td></td>
</tr>
<tr>
<td>TRILL OAM</td>
<td>CC</td>
<td>CV</td>
<td>Path tracing</td>
</tr>
<tr>
<td></td>
<td>Delay measur</td>
<td>ement</td>
<td></td>
</tr>
<tr>
<td></td>
<td>-Packet loss</td>
<td>measur</td>
<td></td>
</tr>
<tr>
<td></td>
<td>-Delay</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

5.3. Guidance to Network Equipment Vendors

As mentioned in Section 1.4., it is imperative for OAM tools to be capable of testing the actual data plane in as much accuracy as possible. While this guideline may appear obvious, it is worthwhile to emphasize the key importance of enforcing fate-sharing between OAM traffic that monitors the data plane and the data plane traffic it monitors.

6. Security Considerations

OAM is tightly coupled with the stability of the network. A successful attack on an OAM protocol can create a false illusion of non-existent failures, or prevent the detection of actual ones. In both cases the attack may result in denial of service.

Some of the OAM tools presented in this document include security mechanisms that provide integrity protection, thereby preventing attackers from forging or tampering with OAM packets. For example, [BFD] includes an optional authentication mechanism for BFD Control packets, using either SHA1, MD5, or a simple password. [OWAMP] and [TWAMP] have 3 modes of security: unauthenticated, authenticated, and encrypted. The authentication uses SHA1 as the HMAC algorithm, and the encrypted mode uses AES encryption.

Confidentiality is typically not considered a requirement for OAM protocols. However, the use of encryption (e.g., [OWAMP] and
[TWAMP]) can make it difficult for attackers to identify OAM packets, thus making it more difficult to attack the OAM protocol.

OAM can also be used as a means for network reconnaissance; information about addresses, port numbers and about the network topology and performance can be gathered either by passively eavesdropping to OAM packets, or by actively sending OAM packets and gathering information from the respective responses. This information can then be used maliciously to attack the network. Note that some of this information, e.g., addresses and port numbers, can be gather even when encryption is used ([OWAMP], [TWAMP]).

For further details about the security considerations of each OAM protocol, the reader is encouraged to review the Security Considerations section of each document referenced by this memo.

7. IANA Considerations

There are no new IANA considerations implied by this document.

8. Acknowledgments

The authors gratefully acknowledge Sasha Vainshtein, Carlos Pignataro, David Harrington, Dan Romascanu, Ron Bonica, Benoit Claise, Stewart Bryant, Tom Nadeau, Elwyn Davies, Al Morton, Sam Aldrin, Thomas Narten, and other members of the OPSA WG for their helpful comments on the mailing list.

This document was prepared using 2-Word-v2.0.template.dot.

9. References

9.1. Normative References

9.2. Informative References

Nadeau, T., Pignataro, C., "Bidirectional Forwarding Detection (BFD) for the Pseudowire Virtual Circuit Connectivity Verification (VCCV)", RFC 5885, June 2010.

Bocci, M., Vigoureux, M., Bryant, S., "MPLS Generic Associated Channel", RFC 5586, June 2009.

IEEE 802.1Q, "IEEE Standard for Local and metropolitan area networks - Media Access Control (MAC) Bridges and Virtual Bridged Local Area Networks", October 2012.

Overview of OAM Tools

[PW-G-ACh] Li, H., Martini, L., He, J., Huang, F., "Using the Generic Associated Channel Label for Pseudowire in the MPLS Transport Profile (MPLS-TP)", RFC 6423, November 2011.

Appendix A. List of OAM Documents

A.1. List of IETF OAM Documents

Table 5 summarizes the OAM related RFCs published by the IETF.

It is important to note that the table lists various RFCs that are different by nature. For example, some of these documents define OAM tools or OAM protocols (or both), while others define protocols that
are not strictly OAM-related, but are used by OAM tools. The table also includes RFCs that define the requirements or the framework of OAM in a specific context (e.g., MPLS-TP).

The RFCs in the table are categorized in a few sets as defined in Section 1.3.

<table>
<thead>
<tr>
<th>Toolset</th>
<th>Title</th>
<th>RFC</th>
</tr>
</thead>
<tbody>
<tr>
<td>IP Ping</td>
<td>Requirements for Internet Hosts -- Communication Layers [IntHost]</td>
<td>RFC 1122</td>
</tr>
<tr>
<td></td>
<td>A Glossary of Networking Terms [NetTerms]</td>
<td>RFC 1208</td>
</tr>
<tr>
<td></td>
<td>Internet Control Message Protocol [ICMPv4]</td>
<td>RFC 792</td>
</tr>
<tr>
<td>IP Traceroute</td>
<td>A Primer On Internet and TCP/IP Tools and Utilities [TCPIP-Tools]</td>
<td>RFC 2151</td>
</tr>
<tr>
<td></td>
<td>FYI on a Network Management Tool Catalog: Tools for Monitoring and Debugging TCP/IP Internets and Interconnected Devices [NetTools]</td>
<td>RFC 1470</td>
</tr>
<tr>
<td></td>
<td>Internet Control Message Protocol [ICMPv4]</td>
<td>RFC 792</td>
</tr>
<tr>
<td></td>
<td>Extended ICMP to Support Multi-Part Messages [ICMP-MP]</td>
<td>RFC 4884</td>
</tr>
<tr>
<td>Category</td>
<td>Tool Description</td>
<td>RFC</td>
</tr>
<tr>
<td>-------------------</td>
<td>--</td>
<td>--------</td>
</tr>
<tr>
<td>Extending ICMP</td>
<td>for Interface and Next-Hop Identification [ICMP-Int]</td>
<td>5837</td>
</tr>
<tr>
<td></td>
<td>BFD</td>
<td></td>
</tr>
<tr>
<td>Bidirectional</td>
<td>Forwarding Detection [BFD]</td>
<td>5880</td>
</tr>
<tr>
<td></td>
<td>Forwarding Detection (BFD) for IPv4 and IPv6 (Single Hop) [BFD-IP]</td>
<td>5881</td>
</tr>
<tr>
<td></td>
<td>Generic Application of Bidirectional Forwarding Detection [BFD-Gen]</td>
<td>5882</td>
</tr>
<tr>
<td></td>
<td>Forwarding Detection (BFD) for Multihop Paths [BFD-Multi]</td>
<td>5883</td>
</tr>
<tr>
<td></td>
<td>Forwarding Detection for MPLS Label Switched Paths (LSPs) [BFD-LSP]</td>
<td>5884</td>
</tr>
<tr>
<td></td>
<td>Forwarding Detection for the Pseudowire Virtual Circuit Connectivity Verification (VCCV) [BFD-VCCV]</td>
<td>5885</td>
</tr>
<tr>
<td></td>
<td>MPLS OAM</td>
<td></td>
</tr>
<tr>
<td>Operations and</td>
<td>Management (OAM) Requirements for Multi-Protocol Label Switched (MPLS) Networks [MPLS-OAM]</td>
<td>4377</td>
</tr>
<tr>
<td>Management (OAM)</td>
<td>A Framework for Multi-Protocol Label Switching (MPLS) Operations and Management (OAM) [MPLS-OAM-FW]</td>
<td>4378</td>
</tr>
<tr>
<td></td>
<td>Detecting Multi-Protocol Label Switched (MPLS) Data Plane Failures [LSP-Ping]</td>
<td>4379</td>
</tr>
<tr>
<td></td>
<td>Operations and Management (OAM) Requirements for Point-to-Multipoint MPLS Networks [MPLS-P2MP]</td>
<td>4687</td>
</tr>
<tr>
<td>Protocol</td>
<td>Description</td>
<td>RFC</td>
</tr>
<tr>
<td>----------------</td>
<td>---</td>
<td>-------</td>
</tr>
<tr>
<td>TCP</td>
<td>Study on the use of OAM tools for monitoring TCP connections</td>
<td></td>
</tr>
<tr>
<td>ICMP</td>
<td>Extensions for Multiprotocol Label Switching [ICMP-Ext]</td>
<td>4950</td>
</tr>
<tr>
<td>BFD-LSP</td>
<td>Bidirectional Forwarding Detection for MPLS Label Switched Paths (LSPs)</td>
<td>5884</td>
</tr>
<tr>
<td>MPLS-TP OAM</td>
<td>Requirements for OAM in MPLS-TP [MPLS-TP-OAM]</td>
<td>5860</td>
</tr>
<tr>
<td>G-ACh</td>
<td>MPLS Generic Associated Channel [G-ACh]</td>
<td>5586</td>
</tr>
<tr>
<td>TP-OAM-FW</td>
<td>MPLS-TP OAM Framework [TP-OAM-FW]</td>
<td>6371</td>
</tr>
<tr>
<td>TP-CC-CV</td>
<td>Proactive Connectivity Verification, Continuity Check, and Remote Defect Indication for the MPLS Transport Profile [TP-CC-CV]</td>
<td>6428</td>
</tr>
<tr>
<td>OnDemand-CV</td>
<td>MPLS On-Demand Connectivity Verification and Route Tracing [OnDemand-CV]</td>
<td>6426</td>
</tr>
<tr>
<td>TP-Fault</td>
<td>MPLS Fault Management Operations, Administration, and Maintenance (OAM) [TP-Fault]</td>
<td>6427</td>
</tr>
<tr>
<td>Lock-Loop</td>
<td>MPLS Transport Profile Lock Instruct and Loopback Functions [Lock-Loop]</td>
<td>6435</td>
</tr>
<tr>
<td>OAM</td>
<td>Connectivity Verification (VCCV): A Control Channel for Pseudowires [VCCV]</td>
<td></td>
</tr>
<tr>
<td>-----</td>
<td>--</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Bidirectional Forwarding Detection for the Pseudowire Virtual Circuit Connectivity Verification (VCCV) [BFD-VCCV]</td>
<td>RFC 5885</td>
</tr>
<tr>
<td></td>
<td>Using the Generic Associated Channel Label for Pseudowire in the MPLS Transport Profile (MPLS-TP) [PW-G-ACh]</td>
<td>RFC 6423</td>
</tr>
<tr>
<td></td>
<td>MPLS and Ethernet Operations, Administration, and Maintenance (OAM) Interworking [Eth-Int]</td>
<td>RFC 7023</td>
</tr>
<tr>
<td>OWAMP and</td>
<td>A One-way Active Measurement Protocol [OWAMP]</td>
<td>RFC 4656</td>
</tr>
<tr>
<td></td>
<td>Framework for IP Performance Metrics [IPPM-FW]</td>
<td>RFC 2330</td>
</tr>
<tr>
<td></td>
<td>IPPM Metrics for Measuring Connectivity [IPPM-Con]</td>
<td>RFC 2678</td>
</tr>
<tr>
<td></td>
<td>A One-way Delay Metric for IPPM [IPPM-IDM]</td>
<td>RFC 2679</td>
</tr>
<tr>
<td></td>
<td>A One-way Packet Loss Metric for IPPM [IPPM-1LM]</td>
<td>RFC 2680</td>
</tr>
<tr>
<td></td>
<td>A Round-trip Delay Metric for IPPM</td>
<td>RFC 2681</td>
</tr>
</tbody>
</table>
A.2. List of Selected Non-IETF OAM Documents

In addition to the OAM tools defined by the IETF, the IEEE and ITU-T have also defined various OAM tools that focus on Ethernet, and various other transport network environments. These various tools, defined by the three standard organizations, are often tightly coupled, and have had a mutual effect on each other. The ITU-T and IETF have both defined OAM tools for MPLS LSPs, [ITU-T-Y1711] and [LSP-Ping]. The following OAM standards by the IEEE and ITU-T are to some extent linked to IETF OAM tools listed above and are mentioned here only as reference material:

- OAM tools for Layer 2 have been defined by the ITU-T in [ITU-T-Y1731], and by the IEEE in 802.1ag [IEEE802.1Q]. The IEEE 802.3 standard defines OAM for one-hop Ethernet links [IEEE802.3ah].

- The ITU-T has defined OAM for MPLS LSPs in [ITU-T-Y1711], and MPLS-TP OAM in [ITU-G8113.1] and [ITU-G8113.2].

It should be noted that these non-IETF documents deal in many cases with OAM functions below the IP layer (Layer 2, Layer 2.5) and in some cases operators use a multi-layered OAM approach, which is a function of the way their networks are designed.

Table 6 summarizes some of the main OAM standards published by non-IETF standard organizations. This document focuses on IETF OAM standards, but these non-IETF standards are referenced in this document where relevant.
<table>
<thead>
<tr>
<th>Title</th>
<th>Standard/Draft</th>
</tr>
</thead>
<tbody>
<tr>
<td>ITU-T MPLS OAM</td>
<td></td>
</tr>
<tr>
<td>Assignment of the ’OAM Alert Label’ for Multiprotocol Label Switching</td>
<td></td>
</tr>
<tr>
<td>Architecture (MPLS) Operation and Maintenance (OAM) Functions [OAM-Label]</td>
<td>RFC 3429</td>
</tr>
<tr>
<td>Note: although this is an IETF document, it is listed as one of the</td>
<td></td>
</tr>
<tr>
<td>non-IETF OAM standards, since it was defined as a complementary part of ITU-T Y.1711.</td>
<td></td>
</tr>
<tr>
<td>ITU-T MPLS-TP OAM</td>
<td></td>
</tr>
<tr>
<td>Operations, administration and Maintenance mechanisms for MPLS-TP</td>
<td>ITU-T G.8113.2</td>
</tr>
<tr>
<td>networks using the tools defined for MPLS [ITU-G8113.2]</td>
<td></td>
</tr>
<tr>
<td>Note: this document describes the OAM toolset defined by the IETF for MPLS-TP, whereas ITU-T G.8113.1 describes the OAM toolset defined by the ITU-T.</td>
<td></td>
</tr>
<tr>
<td>ITU-T MPLS-TP OAM</td>
<td></td>
</tr>
<tr>
<td>Operations, Administration and Maintenance mechanism for MPLS-TP in</td>
<td>ITU-T G.8113.1</td>
</tr>
<tr>
<td>Packet Transport Network (PTN)</td>
<td></td>
</tr>
<tr>
<td>Allocation of a Generic Associated Channel Type for ITU-T MPLS Transport Profile Operation, Maintenance, and Administration (MPLS-TP OAM) [ITU-T-CT]</td>
<td>RFC 6671</td>
</tr>
<tr>
<td>Note: although this is an IETF document, it is listed as one of the</td>
<td></td>
</tr>
<tr>
<td>---------------------</td>
<td>---</td>
</tr>
<tr>
<td>IEEE CFM</td>
<td>Connectivity Fault Management [IEEE802.1Q] Note: CFM was originally published as IEEE 802.1ag, but is now incorporated in the 802.1Q standard.</td>
</tr>
<tr>
<td>IEEE DDCFM</td>
<td>Management of Data Driven and Data Dependent Connectivity Faults [IEEE802.1Q] Note: DDCFM was originally published as IEEE 802.1Qaw, but is now incorporated in the 802.1Q standard.</td>
</tr>
<tr>
<td>IEEE 802.3 link level OAM</td>
<td>Media Access Control Parameters, Physical Layers, and Management Parameters for Subscriber Access Networks [IEEE802.3ah] Note: link level OAM was originally defined in IEEE 802.3ah, and is now incorporated in the 802.3 standard.</td>
</tr>
</tbody>
</table>

Table 6 Non-IETF OAM Standards Mentioned in this Document

 non-IETF OAM standards, since it was defined as a complementary part of ITU-T G.8113.1.
Authors’ Addresses

Tal Mizrahi
Marvell
6 Hamada St.
Yokneam, 20692
Israel

Email: talmi@marvell.com

Nurit Sprecher
Nokia Solutions and Networks
3 Hanagar St. Neve Ne’eman B
Hod Hasharon, 45241
Israel

Email: nurit.sprecher@nsn.com

Elisa Bellagamba
Ericsson
6 Farogatan St.
Stockholm, 164 40
Sweden

Phone: +46 761440785
Email: elisa.bellagamba@ericsson.com

Yaacov Weingarten
34 Hagefen St.
Karnei Shomron, 4485500
Israel

Email: wyaacov@gmail.com
Best Practices for Optimal LAG/ECMP Component Link Utilization in Provider Backbone networks

draft-krishnan-opsawg-large-flow-load-balancing-00.txt

Status of this Memo

This Internet-Draft is submitted in full conformance with the provisions of BCP 78 and BCP 79.

This Internet-Draft is submitted in full conformance with the provisions of BCP 78 and BCP 79. This document may not be modified, and derivative works of it may not be created, and it may not be published except as an Internet-Draft.

This Internet-Draft is submitted in full conformance with the provisions of BCP 78 and BCP 79. This document may not be modified, and derivative works of it may not be created, except to publish it as an RFC and to translate it into languages other than English.

This document may contain material from IETF Documents or IETF Contributions published or made publicly available before November 10, 2008. The person(s) controlling the copyright in some of this material may not have granted the IETF Trust the right to allow modifications of such material outside the IETF Standards Process. Without obtaining an adequate license from the person(s) controlling the copyright in such materials, this document may not be modified outside the IETF Standards Process, and derivative works of it may not be created outside the IETF Standards Process, except to format it for publication as an RFC or to translate it into languages other than English.

Internet-Drafts are working documents of the Internet Engineering Task Force (IETF), its areas, and its working groups. Note that other groups may also distribute working documents as Internet-Drafts.
Abstract

The demands on the networking infrastructure are growing exponentially; the drivers are bandwidth hungry rich media applications, inter data center communications etc. In this context, it is important to optimally use the bandwidth in the service provider backbone networks which extensively use LAG/ECMP techniques for bandwidth scaling. This internet draft describes the issues faced in the service provider backbone in the context of LAG/ECMP and formulates best practice recommendations for managing the bandwidth efficiently in the service provider backbone.
1. Introduction

Service provider backbone networks extensively use LAG/ECMP techniques for bandwidth scaling. Network traffic can be predominantly categorized into two traffic types, long-lived large flows and short-lived small flows. Hashing techniques, which perform an approximate distribution of these flows across the LAG/ECMP component links, typically result in a sub-optimal utilization of LAG/ECMP component links. Round Robin load-balancing techniques address this problem but have the side effect of causing packet re-ordering. This internet draft recommends best practices for optimal LAG/ECMP component link utilization while using hashing techniques. These best practices comprise of the following; first is identification of long-lived large flows in routers and next is assigning the long-lived large flows to specific LAG/ECMP component links.

2. Conventions used in this document

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this document are to be interpreted as described in RFC 2119 [RFC2119].
3. Sub-optimal LAG/ECMP Component Link Utilization in the current framework

Hashing techniques, which perform an approximate distribution of long-lived large flows and short-lived small flows across the LAG/ECMP component links, typically results in a sub-optimal utilization of LAG/ECMP component links. This is depicted in Figure 1 with a detailed description below.

- There is a LAG between 2 routers R1 and R2. This LAG has 3 component links (1), (2), (3).
- Component link (1) has 2 short-lived small flows and 1 long-lived large flow and the link capacity is optimally utilized.
- Component link (2) has 3 short-lived small flows and no long-lived large flow and the link capacity is sub-optimally utilized.
 - The absence of any long-lived large flow causes the component link under-utilization.
- Component link (3) has 2 short-lived small flows and 2 long-lived large flows and the link capacity is over-utilized.
 - The presence of 2 long-lived large flows causes the component link over-utilization.
4. Best practices for optimal LAG/ECMP Component Link Utilization

The suggested techniques in this draft for optimal LAG/ECMP component link utilization are meant to put forth a locally optimized solution, i.e. local in the sense of both measuring and optimizing.
for long-lived large flows at individual nodes in the network. This approach would not yield a globally optimal placement of a large, long-lived flow across several nodes in the network which some networks may desire/require. On the other hand, this may be adequate for some operators for the following reasons 1) Different links in the network experience different levels of utilization and, thus, a more "targeted" solution is needed for those few hot-spots in the network 2) Some networks may lack end-to-end visibility.

The various steps in achieving optimal LAG/ECMP component link utilization in backbone networks are detailed below

Step 1) This involves identifying long-lived large flows in the egress processing elements in routers; besides the flow parameters, this also involves identifying the egress component link the flow is using. The identification of long-lived large flows is explained in detail in section 4.1.

Step 2) The egress component links are periodically scanned for link utilization. If the egress component link utilization exceeds a pre-programmed threshold, an operator alert is generated. The long-lived large flows mapping to the congested egress component link are exported to a central management entity. IETF could potentially consider a standards-based activity around, say, a data-model used to move this information from the router to the central management entity.

Step 3) On receiving the alert about the congested component link, the operator, through a central management entity finds out the long-lived large flows mapping to the component link and the LAG/ECMP group to which the component link maps to.

Step 4) The operator can choose to rebalance the long-lived large flows on lightly loaded component links of the LAG/ECMP group. The operator, through a central management entity 1) Can indicate specific long-lived large flows to rebalance 2) Let the router decide the best long-lived large flows to rebalance. The central management entity conveys the above information to the router. IETF could potentially consider a standards-based activity around, say, a data-model used to move this information from the central management entity to the router. The re-balancing of long-lived large flows is explained in detail in section 4.2.
4.1. Long-lived Large Flow Identification

A flow (long-lived large flow or short-lived small flow) can be defined using one of the following suggested formats as described below:

1. IP 5 tuple: IP Protocol, IP source address, IP destination address, TCP/UDP source port, TCP/UDP destination port
2. IP 3 tuple: IP Protocol, IP source address, IP destination address
3. MPLS Labels
4. VXLAN, NVGRE
5. Other formats

The best practices described in this document are agnostic to the format of the flow.

4.1.1. Sflow/Netflow

Enable Sflow/Netflow sampling on all the egress ports in the routers. Through Sflow processing in a Sflow Collector, an approximate indication of large flows mapping to each of the component links in each LAG/ECMP group is available. The advantages and disadvantages of Sflow/Netflow are detailed below.

Advantages of Sflow/Netflow

- Supported in most routers
- Minimal router resources

Disadvantages of Sflow/Netflow

- Approximate identification of long-lived large flows
- Non real-time identification of long-lived large flows based on historical analysis

The time taken to determine a candidate long-lived large flow would be dependent on the amount of sFlow samples being generated and the processing power of the external sFlow collector; this is under further study.
4.1.2. Automatic hardware identification

Implementations may choose to implement automatic identification of long-lived large flows in hardware in egress processing elements of routers. The characteristics of such an implementation would be

- Inline solution
- Minimal system resources
- Maintain line-rate performance
- Perform accounting of long-lived large flows with a high degree of accuracy

Using automatic hardware identification of long-lived large flows, an accurate indication of large flows mapping to each of the component links in a LAG/ECMP group is available. The advantages and disadvantages of automatic hardware identification are detailed below.

Advantages of Automatic Hardware Identification

- Accurate identification of long-lived large flows
- Real-time identification of long-lived large flows

Disadvantages of Automatic Hardware Identification

- Not supported in most routers

The measurement interval for determining a candidate long-lived large flow and the minimum bandwidth of the long-lived large flow would be programmable parameters in the router; this is under further study.

The implementation of automatic hardware identification of long-lived large flows is vendor dependent. Below is a suggested technique.

4.1.2.1. Suggested Technique for Automatic Hardware Identification

There are multiple hash tables, each with a different hash function. Each hash table entry has an associated counter. On packet arrival, a new flow is looked up in parallel in all the hash tables and the corresponding counter is incremented. If the counter exceeds a programmed threshold in a given time interval in all the hash table entries, a candidate long-lived-flow is learnt and programmed in a
hardware table resource like TCAM. There may be some false positives due to multiple short-lived small flows masquerading as a long-lived large flow; the amount of false positives is reduced by parallel hashing.

4.2. Long-lived Large Flow Re-balancing

Below are suggested techniques for long-lived large flow re-balancing. Our suggestion is for the router vendors to implement all these techniques and let the operator choose the right technique based on various application needs.

4.2.1. No re-balancing of short-lived small flows

In the LAG/ECMP group, choose other member component links with least average port utilization. Move the long-lived large flow(s) from the heavily loaded component link to the new member component links using a Policy based routing (PBR) rule in the ingress processing element(s) in the routers. The benefits of this algorithm are

- Short-lived small flows are not subjected to flow re-ordering
- Only certain long-lived large flows are subjected to flow re-ordering

4.2.2. Other Techniques

It is possible use other algorithms, for example, removing a member component link from the LAG/ECMP group and using it only for long-lived large flows.

4.2.3. Re-balancing of long-lived large flows and short-lived small flows - an example

Optimal LAG/ECMP component utilization for the use case in Figure 1, is depicted below in Figure 2. This is achieved as follows

Step 1) Long-lived large flows are identified in the egress processing elements of router R1 using techniques suggested in Section 4.1.

Step 2) An operator alert is generated indicating that egress component link (3) in router R1 is congested. The long-lived large flows mapping to the congested egress component link are exported from the router to a central management entity.
Step 3) On receiving the alert about the congested component link (3), the operator, through a central management entity finds out the long-lived large flows mapping to the component link and the LAG/ECMP group to which the component link maps to.

Step 4) The operator, through a central management entity, can choose to rebalance the long-lived large flows on lightly loaded component links of the LAG/ECMP group using the suggested techniques in Section 4.2. In the router, a long-lived large flow is moved from component link (3) to component link (2) by using a PBR rule in the ingress processing element(s) in the routers.

Detailed description for Figure 2 is as follows

- There is a LAG between 2 routers R1 and R2. This LAG has 3 component links (1), (2), (3)
- Component link (1) has 2 short-lived small flows and 1 long-lived large flow and the link capacity is optimally utilized
- Component link (2) has 3 short-lived small flows and 1 long-lived large flow and the link capacity is optimally utilized
- Component link (3) has 2 short-lived small flows and 1 long-lived large flow and the link capacity is optimally utilized
Figure 2: Long-lived Large Flows - even distribution across LAG/ECMP component links

5. Acknowledgements

The authors would like to thank Shane Amante for his input.
6. References

6.1. Normative References

6.2. Informative References

[I-D.ietf-rtgwg-cl-requirement] C. Villamizar et al., "Requirements for MPLS Over a Composite Link", June 2012

Authors’ Addresses

Ram Krishnan
Brocade Communications
San Jose, 95134, USA

Phone: +001-408-406-7890
Email: ramk@brocade.com

Sanjay Khanna
Brocade Communications
San Jose, 95134, USA

Phone: +001-408-333-4850
Email: skhanna@brocade.com
Enhancement of CAPWAP Problem Statement
draft-shao-capwap-plus-ps-01

Abstract

In recent widescale deployments of large public Wi-Fi networks, and in their integration with cellular networks EAP based authentication has been considered as a good candidate to making Wi-Fi user experience seamless similar to what it has been for cellular users. A few new functions which could enhance CAPWAP protocol have been identified in such deployments that can help improve the large scale carrier grade Wi-Fi networks.

Status of this Memo

This Internet-Draft is submitted in full conformance with the provisions of BCP 78 and BCP 79.

Internet-Drafts are working documents of the Internet Engineering Task Force (IETF). Note that other groups may also distribute working documents as Internet-Drafts. The list of current Internet-Drafts is at http://datatracker.ietf.org/drafts/current/.

Internet-Drafts are draft documents valid for a maximum of six months and may be updated, replaced, or obsoleted by other documents at any time. It is inappropriate to use Internet-Drafts as reference material or to cite them other than as "work in progress."

This Internet-Draft will expire on April 25, 2013.

Copyright Notice

Copyright (c) 2012 IETF Trust and the persons identified as the document authors. All rights reserved.

This document is subject to BCP 78 and the IETF Trust’s Legal Provisions Relating to IETF Documents (http://trustee.ietf.org/license-info) in effect on the date of
publication of this document. Please review these documents carefully, as they describe your rights and restrictions with respect to this document. Code Components extracted from this document must include Simplified BSD License text as described in Section 4.e of the Trust Legal Provisions and are provided without warranty as described in the Simplified BSD License.

Table of Contents

1. Introduction .. 3
2. Conventions used in this document 3
3. Supporting EAP authentication in Wi-Fi network 3
 3.1. Scenario Description 3
4. The Scope of Split and Local MAC mode 4
5. 802.11n support .. 4
6. Channel auto reconfiguration 5
7. Power auto reconfiguration 6
8. Security Considerations .. 6
9. IANA Considerations ... 6
10. Contributors ... 6
11. Normative References ... 6
Authors’ Addresses .. 7
1. Introduction

Mobile devices such as smartphones and tablets continue to lead growth in internet traffic. It is predicted that such growth will continue even with the deployment of LTE network. Almost all mobile devices today are Wi-Fi enabled. Public Wi-Fi services have lately been paid more attention for that reason to help bring this growth of cellular data traffic to a sustainable level. Wi-Fi spectrum is free and globally available. Because of capacity and coverage issues, LTE networks will continue to need public Wi-Fi network as a complementary technology.

Recently industry efforts have been made to make Wi-Fi roaming as seamless as it is for cellular GSM networks by deploying EAP based authentication mechanism; Toward this end current CAPWAP protocol could be enhanced to help ease such deployments.

There have been a number of proprietary implementations of the interface between Access Point (AP) and Access Controller (AC) and some of them provide capabilities which could be used to improve the Wi-Fi performance. Once a standard interface is specified, the benefits for operators of standards based deployment will outweigh any benefits of past proprietary solutions.

2. Conventions used in this document

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this document are to be interpreted as described in [RFC2119].

3. Supporting EAP authentication in Wi-Fi network

Current EAP message is designed to be transmitted in CAPWAP data Plane. AC which is in the data path will act as the authenticator to transmit this EAP message to AAA server. An operator may however prefer to bypass the AC for the user plane in order to improve the performance of AC and allow it to manage more APs when the network is growing. In order to allow ACs to be bypassed for EAP messages, the CAPWAP control message could be extended to support EAP messages.

3.1. Scenario Description

The following figure shows where and how the problem arises. In many operators networks. The Access Controller is placed remotely at the central data center. In order to avoid the traffic aggregation at the AC, the data plane out of the AP is directed to the Access Router.
(AR). In this scenario, the CAPWAP-CTL tunnel and CAPWAP-DATA tunnel are separated from each other.

Because there are no explicit message types to support the encapsulation of EAP packets in the CAPWAP-CTL tunnel, the EAP messages are tunneled via the CAPWAP-DATA plane to the AR. AR acts as authenticator in the EAP framework. After authentication, the AR receives the keying message for the session. But AC is supposed to deliver these keying messages to the AP, and AR has no standard interface to ship them to the AP or the AC. This is unacceptable in the scenario of EAP-based auto-authentication.

Figure 1: Split between CAPWAP-CTL and CAPWAP-DATA Plane

So it is desirable to encapsulate EAP messages in the CAPWAP-CTL plane, to avoid data aggregation and improve WLAN system scalability.

4. The Scope of Split and Local MAC mode

There are 3 major categories has been specified by CAPWAP, the first is about Functions: such as "Distribution Service", "Integration Service", "Beacon Generation", "Probe Response Generation" "Power Mgmt/Packet Buffering", "Fragmentation/Defragmentation", and "Assoc/Disassoc/Reassoc"; the second is about QoS, such as, "Classifying", "Scheduling", and "Queuing"; the third is about RSN (WPA2) such as "IEEE 802.1X/EAP", "RSNA Key Management", and "IEEE 802.11 Encryption/Decryption". Even Split and Local MAC model has optional implementation, either at AP or AC, this lead to serious issue about Interoperation

Proposing a specific mode about all this implementation will help interoperation among different vendors.

5. 802.11n support

There are a couple of capabilities of 802.11n that need to be supported by CAPWAP control message such as radio capability, radio configuration and station information.
IEEE 802.11n standard was published in 2009 and it is an amendment to the IEEE 802.11-2007 standard to improve network throughput. The maximum data rate increases to 600Mbit/s physical throughput rate. In the physical layer, 802.11n use OFDM and MIMO to achieve the high throughput. 802.11n use multiple antennas to form antenna array which can be dynamically adjusted to improve the signal strength and extend the coverage.

802.11n support two modes of channel usage: 20MHz mode and 40Mhz mode. 802.11n has a new feature called channel binding. It can bind two adjacent 20MHz channel to one 40MHz channel to improve the throughput. If using 40Mhz channel configuration there will be only one non-overlapping channel in 2.4GHz. In the large scale deployment scenario, operator need to use 20MHz channel configuration in 2.4GHz to allow more non-overlapping channels.

In MAC layer, a new feature of 802.11n is Short Guard Interval (GI). 802.11a/g use 800ns guard interval between the adjacent information symbols. In 802.11n, the GI can be configured to 400nm under good wireless condition.

Another feature in 802.11 MAC layer is Block ACK. 802.11n can use one ACK frame to acknowledge several MPDU receiving event.

CAPWAP need to be extended to support the above new 802.11n features. For example, CAPWAP should allow the access controller to know the supported 802.11n features and the access controller should be able to configure the different channel binding modes. One possible solution is to extend the CAPWAP information element for 802.11n.

6. Channel auto reconfiguration

Channel auto reconfiguration could improve the Wi-Fi performance. CAPWAP message could be extended to support this function.

Each channel may provide different quality of service, when WTP works. WTP can be active or passive scanning and monitoring each channel, form the report of measurement results to the Access Controller. WTP can periodically send configure status request to the AC. According to the current channel quality and other channel quality scanning report, ACs decide whether modify the channel to be used, send the configure status response packet to set up a new channel for the WTP.
7. Power auto reconfiguration

Power auto reconfiguration could improve the Wi-Fi performance. CAPWAP message could be extended to achieve following outcome.

- Maximize Spectrum Usage: Real-world Wi-Fi deployments are depending on the features of shared media. Three channels available in the 2.4GHz band and 23 channels in the 5GHz band. Power auto reconfiguration could help these channels be fully utilized. As the results, clients could be distributed across all available channels.
- Reduce Interference: when multiple devices attempt to simultaneously access the same channel at the same time, a co-channel interference likely happened. It reduces overall performance of the channel. The reconfiguration via CAPWAP could efficiently mitigate the interference. That is essential to proper network operation.
- Optimize Coverage: Simply increasing AP power may not help to maximize coverage because it creates an unbalanced condition in which more distantly located clients may perform poorly due to their lower transmit output power. The power reconfiguration could achieve a balanced environment, where configuration could ensure that coverage is uniform and adequate throughout the service area.

8. Security Considerations

BD

9. IANA Considerations

None

10. Contributors

Yifan Chen chenyifan@chinamobile.com
Bocun Deng 13316090701@189.cn
Satoru Matsushima satoru.matsushima@tm.softbank.co.jp

11. Normative References

[RFC2119] Bradner, S., "Key words for use in RFCs to Indicate

Authors’ Addresses

Chunju Shao
China Mobile
No.32 Xuanwumen West Street
Beijing 100053
China

Email: shaochunju@chinamobile.com

Hui Deng
China Mobile
No.32 Xuanwumen West Street
Beijing 100053
China

Email: denghui@chinamobile.com

Rong Zhang
China Telecom
No.109 Zhongshandadao avenue
Tianhe District,
Guangzhou 510630
China

Email: zhangr@gsta.com