
Network Working Group Y. Gu
Internet-Draft Huawei
Expires: February 28, 2013 M. Shore
 No Mountain Software
 S. Sivakumar
 Cisco Systems
 August 27, 2012

 A Framework and Problem Statement for Flow-associated Middlebox State
 Migration
 draft-gu-statemigration-framework-02

Abstract

 This document presents an initial framework and discussion of the
 problem of transferring middlebox (for example, firewall or NAT)
 flow-coupled state from one middlebox to another while the flow is
 still active. This has most recently come up in the context of
 virtual machine (VM) migration between hypervisors, but it is a
 problem that has appeared in other situations, as well. We present
 some of the parameters of the problem, define some language for
 discussing the problem, and begin to identify a path forward for
 addressing it.

Status of this Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at http://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on February 28, 2013.

Copyright Notice

 Copyright (c) 2012 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust’s Legal

Gu, et al. Expires February 28, 2013 [Page 1]

Internet-Draft Middlebox State Migration August 2012

 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

 1. Introduction . 3
 2. Terminology . 4
 3. Goals . 5
 4. Middlebox state . 6
 4.1. What state is associated with a flow on a middlebox? . . . 6
 4.2. State vs policy . 7
 4.3. Mechanisms for instantiating middlebox state 8
 5. "Moving" endpoints . 9
 5.1. A few words about addresses 9
 5.2. Scenarios . 9
 5.2.1. Virtual machine migration 9
 5.2.2. SCTP NAT . 9
 5.2.3. High availability, and failover 10
 6. "Directionality" . 11
 7. Problems . 12
 7.1. Recognizing when an endpoint has moved 12
 7.2. Topology discovery . 12
 7.3. Copying state from a middlebox 13
 7.4. Installing state on the new middlebox 14
 8. Security Considerations 15
 9. IANA Considerations . 16
 10. Acknowledgments . 17
 11. Informative References . 18
 Appendix A. On the applicability of the Context Transfer
 Protocol . 19
 A.1. Topology awareness . 19
 A.2. Triggers . 20
 A.3. Copying state . 20
 A.4. Conclusion . 21
 Authors’ Addresses . 22

Gu, et al. Expires February 28, 2013 [Page 2]

Internet-Draft Middlebox State Migration August 2012

1. Introduction

 An end-to-end network flow typically traverses one or more
 "middlebox," which may retain state about the flow. These include,
 for example, firewalls, NATs, traffic optimizers, and similar. The
 flow-associated state is usually instantiated through a combination
 of traffic inspection and broad policies, but may also be created by
 the use of an explicit request or signaling mechanism.

 When an endpoint changes its point of attachment to a network, it
 retains its IP address, and the standard 5-tuple used to describe a
 flow (source and destination addresses, source and destination ports,
 protocol) stay the same. Because of this it is possible to move
 existing middlebox state containing these elements.

 The problem of how to handle transfering flow-associated middlebox
 state when one flow endpoint moves is not a new one, but with some
 exceptions it remains largely unaddressed. For example, situations
 in which one endpoint or another "move" (we define what it means to
 move an endpoint in more detail in Section 5) include mobile IP
 [RFC5944], failover in a high-availability deployment, and VM
 (virtual machine) migration. Related problems include multihomed
 endpoints in SCTP and load balancing.

 In this document we establish terminology (Section 2), describe the
 problem, and lay out the components of the problem that would need to
 be addressed in a solution.

Gu, et al. Expires February 28, 2013 [Page 3]

Internet-Draft Middlebox State Migration August 2012

2. Terminology

 flow: "Traffic flow" is defined in [RFC2722] as an artificial
 logical equivalent of a call or connection. It is delimited by a
 start and a stop time.

 middlebox: A middlebox was defined in [RFC3234] as "any intermediary
 device performing functions other than the normal, standard
 functions of an IP router on the datagram path between a source
 host and a destination host." RFC 3234 provides an older but
 excellent and still-relevant taxonomy of middlebox types.

 move: When we talk about an endpoint "moving" what we are describing
 is the endpoint changing its point of attachment to the network.
 For the purpose of this discussion we assume that it retains the
 same IP address after the move that it had before the move.

 policy: See Section 4.2

Gu, et al. Expires February 28, 2013 [Page 4]

Internet-Draft Middlebox State Migration August 2012

3. Goals

 The problem we are interested in solving is the question of how to
 keep longer-lived network flows "alive" when an endpoint’s point of
 attachment to a network changes. The particular piece of this we
 intend to address is how to move the middlebox (in this case,
 firewall or NAT) state associated with a network flow to new
 middleboxes.

Gu, et al. Expires February 28, 2013 [Page 5]

Internet-Draft Middlebox State Migration August 2012

4. Middlebox state

4.1. What state is associated with a flow on a middlebox?

 To date, we haven’t been able to find a normative definition of the
 term ’state’ in IETF documents. More generally it tends to be
 considered to be a set of observable properties associated with an
 object. This is (largely) distinct from automata theory, in which
 "state" refers to the condition of an object (or automaton). The
 observable things which might be associated by a middlebox with a
 network flow are described below.

 Transport-layer middleboxes which keep flow-associated state through
 the duration of the flow typically keep, at a minimum, the standard
 IP 5-tuple:

 {s_addr, d_addr, s_port, d_port, protocol}

 where

 s_addr is the source address

 d_addr is the destination address

 s_port is the source port

 d_port is the destination port

 protocol is the IP protocol (TCP, UDP, SCTP, RSVP, etc.)

 Other data elements often associated with a network flow include
 timers.

 Over the lifetime of a flow, it is not expected that elements of the
 standard 5-tuple will change, but there may be other pieces of state,
 such as timers, or data extracted from stateful inspection, which may
 be expected to change before a flow terminates.

 As mentioned above, when an endpoint "moves" it retains its IP
 address(es) and the sockaddr information associated with a flow on an
 endpoint does not change.

 Middlebox state is almost always associated with a specific interface
 (rather than the interface being an attribute of the flow). Some
 "stateful inspection" firewalls may keep state from higher layers in
 the networking stack: everything from TCP sequence numbers to entire
 SIP dialogues.

Gu, et al. Expires February 28, 2013 [Page 6]

Internet-Draft Middlebox State Migration August 2012

 Note that the state associated with a flow may be left up when the
 flow is torn down in some implementations, such as those NATs that
 put the state on an activity-based timer as an efficiency mechanism,
 to avoid reinstantiating state should a new flow be created which
 shares the attributes of the flow which just ended. This is often
 the case with HTTP, for example.

 It should also be noted that it is possible that a given
 bidirectional network flow (say, TCP) may have each flow (to and from
 its peer) follow different routes, commonly referred to as
 "asymmetric routing." When an endpoint moves, it is possible that

 o both flows traverse the same middlebox before the move and after
 the move,

 o both flows traverse the same middlebox before the move and
 different middleboxes after the move,

 o both flows traverse different middleboxes before the move but the
 same middlebox after the move, or

 o both flows traverse different middleboxes before the move and
 different middleboxes after the move

4.2. State vs policy

 We would like to draw a clear distinction between state and policy.
 ’Policy’ is a set of statements that define how traffic (in this
 case) is to be treated by the middlebox. In some sense policy is a
 description of what state should be applied to a network flow; that
 is to say, state includes the instantiation of policy. When a flow
 first arrives at a middlebox, it consults its policy to determine
 what state (if any) is to be created and then associated with that
 flow

 As a general rule of thumb, policy is provisioned while state
 represents run-time responses to environmental conditions (in this
 case, network flows). Because policy is provisioned and because we
 assume that the middleboxes between which state would be migrated are
 under the administrative control of the same organization, we will
 make another assumption that there is consistent policy configured
 across middleboxes. We are aware that this is not always a correct
 assumption.

 Note that implicit in this description is the notion of policy
 definition having an administrative scope. That is to say, there is
 an assumption that state must only be migrated between middleboxes in
 the same administrative policy domain. There are several risks

Gu, et al. Expires February 28, 2013 [Page 7]

Internet-Draft Middlebox State Migration August 2012

 associated with migrating state between middleboxes in different
 administrative domains, prominent among which is the possibility of
 installing local state on the "new" middlebox which violates its
 policy. We feel that migrating state between middleboxes in
 different administrative policy domains should be considered out of
 scope for the time being.

4.3. Mechanisms for instantiating middlebox state

 State is created on middleboxes using a small number of mechanisms,
 sometimes in combination.

 The most common means by which middlebox state is created is that the
 middlebox examines traffic and compares it against its own policies,
 which have typically been configured or provisioned by a systems or
 network administrator but in very simple cases can come
 preprovisioned, for example on commodity consumer equipment. It then
 creates middlebox state, in the form of a firewall pinhole, a NAT
 table mapping, QoS table entry, etc.

 Another means is through explicit request. An endpoint or its proxy
 sends a request for resources (again, firewall pinhole, NAT table
 mapping, and so on) to the middlebox using some sort of "signaling"
 protocol to request the resource. The middlebox compares the request
 to its policy and grants or denies the request based on that policy.
 Examples of explicit request include RSVP [RFC2205], midcom
 [RFC3303], TURN [RFC5766], and the work being done by the IETF
 pcp [1] working group.

 It is worth mention that there are mechanisms that are essentially
 hybrids of the previous two approaches, using expected effects of
 sending traffic across a middlebox to trigger hoped-for state
 instantiation. STUN [RFC5389] is probably the best-known example of
 this.

Gu, et al. Expires February 28, 2013 [Page 8]

Internet-Draft Middlebox State Migration August 2012

5. "Moving" endpoints

 Moving an endpoint, in the context of this internet draft, refers to
 changing its point of attachment to a network. Doing so may cause
 traffic to cross different middleboxes from the ones the traffic
 traversed when the middlebox state was created.

5.1. A few words about addresses

 One question that comes up from time to time in discussions of VM
 migration is whether or not the IP address will change as a result of
 the migration. We believe that this is out of scope for the time
 being, not the least because host operating system support is
 potentially difficult. If our goal is to keep a given network flow
 up and alive during a migration, not only would the endpoint
 operating system need to be aware that its address has changed, it
 would also need to to be able to signal the other end of the flow,
 which would have to respond by modifying open sockets’ sockaddrs,
 etc. There are also some obvious security problems that would need
 to be addressed.

5.2. Scenarios

 In this section we introduce a few scenarios. We believe the problem
 characteristics are fundamentally the same in these scenarios and
 that what we’re describing is a general problem.

5.2.1. Virtual machine migration

 The live migration (i.e. the VM appears to remain "up" and available
 during the migration - that is to say, TCP or other connection-
 oriented flows are not dropped) of virtual machines between
 hypervisors in the same data center has been established practice for
 several years now, but there’s been a move towards live migration of
 VMs between geographically disparate data centers (see, for example
 this collaboration [2] between Cisco and VMWare). This provides the
 ability to perform data center maintenance without downtime, data
 center migration or consolidation, data center expansion, and
 workload balancing. There is a compelling use case for VM migration.

5.2.2. SCTP NAT

 The SCTP [RFC4960] protocol supports multihomed endpoints. Any NAT
 that is port-aware (and these days it is nearly all of them) will
 need to have SCTP support in order to be able to handle extracting
 the port numbers even for flows that are single-homed on each end.
 This provides a mechanism for transparent failover when one path
 taken by the network flow fails (see section 6.4 in [RFC4960]

Gu, et al. Expires February 28, 2013 [Page 9]

Internet-Draft Middlebox State Migration August 2012

 The upshot of this is that if a NAT is maintaining state related to a
 flow on the primary path and the primary path fails, that state may
 need to be transferred to the NAT being traversed by the secondary
 path.

 This problem is being addressed in the IETF behave [3] working group.

5.2.3. High availability, and failover

 "High-availability" commonly suggests failover as a mechanism to
 guarantee uninterrupted (or minimally interrupted) services. When a
 failure is detected services are shifted onto a secondary server.
 Note that this shift can be implemented through VM migration, as well
 as having the services brought up on a new system image.

 Because outages are sometimes caused by site failures, failover can
 take place across geographically disparate sites. This introduces
 the likelihood of the flow now traversing a very different network
 path and a new set of middleboxes.

Gu, et al. Expires February 28, 2013 [Page 10]

Internet-Draft Middlebox State Migration August 2012

6. "Directionality"

 One of the questions that comes up when considering an overall
 architecture to solve this set of problems is who initiates the state
 migration and how the data "flow" from place to place.

 One approach is to have the middleboxes communicate directly with
 each other. In this case having all middleboxes poll all other
 middleboxes for copies of their state seems wasteful and inefficient,
 suggesting that communication between middleboxes would need a
 specific trigger. The "old" middlebox could send its state to the
 "new" middlebox or the new middlebox could send a request to the old
 middlebox for a copy of its state. In either case one middlebox
 would need to know the location of the other and be able to
 communicate with it (both parties would need to authenticate to each
 other). Note that if a catastrophic network event caused the old
 middlebox to become unreachable, it would be impossible to
 successfully query it for its state. [Note that this approach was
 considered for SCTP NAT traversal and discarded as impossible, since
 there was no way for one NAT to know about other NATs.]

 Another approach is to have some controlling entity involved, either
 mediating communication between middleboxes or directing
 communication between middleboxes. In a VM migration scenario, a VM
 manager, or a network manager communicating with a VM manager, is an
 obvious candidate. As described in Section 4.2, the migration must
 stay within an administrative policy boundary, which may eliminate
 the need for multiple mediators.

 The orthogonal question to whether or not there’s a mediating entity
 is who initiates the communication - does the old middlebox respond
 to a catastrophic event by dumping state before shutting down (not
 always possible, obviously) or is it polled by a mediating device or
 a new middlebox? Another possibility is to periodically transfer
 incremental information so that a non-recoverable error can save most
 of the flows, if not all.

Gu, et al. Expires February 28, 2013 [Page 11]

Internet-Draft Middlebox State Migration August 2012

7. Problems

 The problems that must be solved in order to move middlebox state
 along with a moving endpoint include:

 o Recognizing when an endpoint has moved

 o Locating middleboxes along the original path

 o Locating middleboxes along the new path

 o Getting a copy of state from middleboxes along the old path

 o Installing that state in middleboxes along the new path

7.1. Recognizing when an endpoint has moved

 As touched upon in Section 5.2, there are various circumstances that
 could cause an endpoint to change its point of attachment to a
 network. They fall into two broad categories: planned and unplanned.

 In the planned case, some entity knows that an endpoint is about to
 move and the move can happen in a controlled fashion. There may be
 time to send network queries, learn topology, and gather state.

 The unplanned case is typically a response to the failure of some
 element in the network. A monitoring heartbeat is missed, a
 connection times out, or some other indication of catastraphic
 failure is received by an endpoint or by a monitoring service. Not
 only does this interfere with the notion of an organized transfer
 from one path to the new one, it also means that there may be cases
 where the old middlebox is not reachable and it’s not possible to
 query its state.

7.2. Topology discovery

 Somehow or other the state migration mechanism needs to be able to
 locate and communicate with both the middleboxes on the old path and
 the middleboxes on the new path. This is not a trivial problem; IP
 was designed to have the network itself be largely opaque to
 endpoints, and very often systems and network administrators prefer
 not to expose network topology, feeling that it would introduce
 security threats.

 There are several options, including configuration, discovery, and
 notification. In configuration, someone with knowledge of the
 network topology would be able to construct a table describing
 middleboxes associated with certain routes. In discovery, a network

Gu, et al. Expires February 28, 2013 [Page 12]

Internet-Draft Middlebox State Migration August 2012

 mechanism would be used to query for the middleboxes along a path,
 similar to traceroute or to a PATH message in RSVP [RFC2205].

 A configuration mechanism would have the disadvantage of being not
 particularly responsive to changes in the network, as well as being
 somewhat error-prone. However, it would not involve inventing a new
 network mechanism or requiring changes on every participating
 middlebox (although the state migration mechanism itself would nearly
 certainly require changes).

 [Note that an architecture that had the middlebox copying its own
 state out to some third party would almost certainly have to be
 configuration-base.]

 A discovery-based approach would require putting new software on
 every middlebox, an approach that is intuitively unappealing and that
 has been repeatedly shown to inhibit adoption of newer technologies.
 There is no such thing as incremental deployment using this approach.
 It also introduces security problems, since without the appropriate
 protections it would allow attackers to probe and discover not just
 network topology but specifically the location of security devices/
 middleboxes in a given network. On the other hand it’s robust
 against configuration errors and highly responsive to changes in the
 underlying network.

 A third option, notification, relies on a middlebox announcing its
 presence to the network, typically using anycast or broadcast. This
 also requires changes to both the middlebox and a controlling entity,
 and a an announcement/notification protocol. It has the advantage of
 being responsive to new middleboxes coming up in the network,
 although a mechanism (such as a heartbeat) would be needed to detect
 outages and drops.

 The primary security consideration in a notification scenario is that
 the network must be tightly controlled to prevent announcements from
 being eavesdropped upon by adversaries.

7.3. Copying state from a middlebox

 Another problem to be solved is the one of copying state from a
 middlebox, encoding it, and transferring it over the network.

 It may be the case that the middleboxes are from different
 manufacturers/vendors, and so the problem of representing the state
 we wish to transfer includes the question of presenting it in a
 vendor-neutral format, including both state semantics and state
 syntax.

Gu, et al. Expires February 28, 2013 [Page 13]

Internet-Draft Middlebox State Migration August 2012

 A somewhat more challenging aspect of this problem is how to
 transport the encoded state. For one thing, it may be that the event
 that triggered the endpoint migration has also rendered the middlebox
 in question unreachable. For another, what sort of load this imposes
 on the middlebox depends, among other things, on the "directionality"
 of the state migration. It may be that an external device, such as a
 session controller, a hypervisor, or another middlebox queries the
 old middlebox for a copy of its state. In high-availability
 scenarios the middlebox may end up "pushing" copies of its state out
 to some controlling or intermediate entity, such as a hypervisor.

 Among the transport characteristics that need to be considered is
 reliability, and being able to recognize when a copy of the source
 middlebox state has not been transferred correctly, whether it’s
 because it’s incomplete, damaged, or inauthentic.

7.4. Installing state on the new middlebox

 The problem of installing state on the new middlebox is closely
 related to the one of copying state from the old middlebox. In both
 cases we’re facing the problems of representation and encoding, a
 transport protocol to/from the middlebox, and questions about
 reachability.

 Reliability is a question here, as well, with the additional concern,
 beyond what is described in the previous section, of whther or not
 the state is installed correctly on the new middlebox. Issues that
 could interfere with installation include resource limitations, and
 authority/authorization.

Gu, et al. Expires February 28, 2013 [Page 14]

Internet-Draft Middlebox State Migration August 2012

8. Security Considerations

 Any time we introduce new mechanisms to query and manipulate
 middleboxes, we also introduce potentially very serious security
 exposures.

 In this case, because we’re planning on discovering the location of
 middleboxes, querying the middleboxes for their state, and installing
 state on middleboxes, we face a very broad range indeed of potential
 threats.

 Network and systems administrators typically want to conceal network
 topology from outsiders, and it may be necessary to use authenticated
 discovery (packet filtering may be adequate for some deployments but
 not all). This introduces problems around credentials management and
 keying for participants, and may suggest that we would want to
 minimize the number of network elements talking with one another.

 Cleary the ability to copy data from a middlebox introduces the
 ability to discovery yet more network topology, and in particular to
 identify specific firewall pinholes and NAT table mappings, and their
 associated state.

 Similarly, the ability to install state on a middlebox can introduce
 both Denial of Service (DoS) vulnerabilities but also the ability of
 an attacker to penetrate a middlebox, or to disable it completely.

 In all cases, protections must be designed with sensitivity to
 performance, since middleboxes often are processing very heavy
 traffic loads. This means keeping an eye on cryptographic processing
 demands, key and other credentials management, etc.

Gu, et al. Expires February 28, 2013 [Page 15]

Internet-Draft Middlebox State Migration August 2012

9. IANA Considerations

 This document has no actions for IANA.

Gu, et al. Expires February 28, 2013 [Page 16]

Internet-Draft Middlebox State Migration August 2012

10. Acknowledgments

 Many thanks to David Black for his careful review and suggestions for
 improvements.

Gu, et al. Expires February 28, 2013 [Page 17]

Internet-Draft Middlebox State Migration August 2012

11. Informative References

 [RFC2205] Braden, B., Zhang, L., Berson, S., Herzog, S., and S.
 Jamin, "Resource ReSerVation Protocol (RSVP) -- Version 1
 Functional Specification", RFC 2205, September 1997.

 [RFC2722] Brownlee, N., Mills, C., and G. Ruth, "Traffic Flow
 Measurement: Architecture", RFC 2722, October 1999.

 [RFC3234] Carpenter, B. and S. Brim, "Middleboxes: Taxonomy and
 Issues", RFC 3234, February 2002.

 [RFC3303] Srisuresh, P., Kuthan, J., Rosenberg, J., Molitor, A., and
 A. Rayhan, "Middlebox communication architecture and
 framework", RFC 3303, August 2002.

 [RFC4067] Loughney, J., Nakhjiri, M., Perkins, C., and R. Koodli,
 "Context Transfer Protocol (CXTP)", RFC 4067, July 2005.

 [RFC4960] Stewart, R., "Stream Control Transmission Protocol",
 RFC 4960, September 2007.

 [RFC5389] Rosenberg, J., Mahy, R., Matthews, P., and D. Wing,
 "Session Traversal Utilities for NAT (STUN)", RFC 5389,
 October 2008.

 [RFC5766] Mahy, R., Matthews, P., and J. Rosenberg, "Traversal Using
 Relays around NAT (TURN): Relay Extensions to Session
 Traversal Utilities for NAT (STUN)", RFC 5766, April 2010.

 [RFC5944] Perkins, C., "IP Mobility Support for IPv4, Revised",
 RFC 5944, November 2010.

 [1] <http://datatracker.ietf.org/wg/pcp/charter/>

 [2] <http://www.cisco.com/en/US/solutions/collateral/ns340/ns517/
 ns224/ns836/white_paper_c11-557822.pdf>

 [3] <http://datatracker.ietf.org/wg/behave/>

Gu, et al. Expires February 28, 2013 [Page 18]

Internet-Draft Middlebox State Migration August 2012

Appendix A. On the applicability of the Context Transfer Protocol

 In this section we examine the applicability of the Context Transfer
 Protocol [RFC4067] to the state migration problem, given the problems
 outlined in Section 7. In Section 7, we identify the following
 components of the overall state migration problem:

 o Recognizing when an endpoint has moved

 o Locating middleboxes along the original path

 o Locating middleboxes along the new path

 o Getting a copy of state from middleboxes along the old path

 o Installing that state in middleboxes along the new path

A.1. Topology awareness

 The Context Transfer Protocol was designed to support node mobility
 -- to minimize disruptions when a mobile node attaches to a new
 access router. In a typical scenario, when a mobile node moves from
 one access router to another, CXTP provides a means to move
 associated state (or context) to the new access router to which the
 node becomes attached.

 In the CXTP scenario, the mobile node "knows" that the access router
 is there and has direct communication with it, by virtue of the
 underlying network mobility mechanisms. A context transfer may be
 initiated by the mobile node when it "knows" that it will be
 attaching to a new access router, or it may be initiated by the
 existing access router when it receives a link-layer trigger.
 Alternatively, a context transfer may be initiated by the new access
 router when it receives a link-layer trigger. In short, the context
 transfer request is generated by a first party in the network, either
 the mobile node itself or one of its access routers.

 This contrasts rather starkly with the usual middlebox scenario,
 where the middlebox is typically invisible to the endpoint (the
 mobile node analogue). A mobile node has an explicit relationship
 with an access router; a network endpoint has no such relationship
 with a firewall or NAT, except in those cases in which the firewall
 or NAT is doing double-duty as a proxy.

 Topology awareness has been one of the most persistent and difficult
 problems associated with middlebox communication issues. In the CXTP
 case topology awareness is pre-existing in the network and the
 relationship between the mobile node and the access router.

Gu, et al. Expires February 28, 2013 [Page 19]

Internet-Draft Middlebox State Migration August 2012

A.2. Triggers

 The question of the triggers initiating a context transfer or state
 migration is very closely tied to the question of topology awareness,
 since in the CXTP case the mobile node "knows" the access router is
 there and has an explicit relationship with it, while in the state
 migration case the middlebox is opaque to the endpoint.

 The mechanisms underlying a mobile node attach/detach differ
 significantly from those underlying, say, a virtual machine
 migration. At the most basic level, a mobile node knows that it is
 moving between access routers. A virtual machine typically does not
 know that it’s being moved - the VM migration is triggered by a third
 party and is opaque to the VM itself, since its own state is
 maintained intact across the migration. A network access device may
 detect a change, but it will not have knowledge of the other
 (previous) middlebox nor will it be able to request that information
 from the migrated VM, since the VM itself will not know whether or
 not there were middleboxes present, or where they were, as described
 in the previous section.

A.3. Copying state

 CXTP has been designed to transfer state between a source access
 router and a destination access router -- that is to say, they must
 know about each other, know that a given mobile node is associated
 with the other access router, and have a network path between the two
 access routers.

 That is not the case when migrating virtual machines. The network
 element which triggers a VM migration does not necessarily have
 network topology awareness and does not have sufficient information
 to be able to request a migration of associated state.

 That said, CXTP looks highly suitable for actually transferring the
 middlebox state, once the topology/ middlebox discovery problems are
 solved. Security issues would need an extra level of scrutiny, not
 only because, as described in [RFC4067], the threats in a handover
 were not well understood at the time the document was published, but
 also because the network elements involved are different and the
 relationships among those network elements are different. Having a
 third party (the element requesting the VM migration) request a
 migration of network middlebox state requires different security
 properties from having a network element (a mobile node or its access
 routers) request a context transfer on its own behalf.

Gu, et al. Expires February 28, 2013 [Page 20]

Internet-Draft Middlebox State Migration August 2012

A.4. Conclusion

 Based on the previous discussion we believe that CXTP may be directly
 useful for the actual transfer of middlebox state but that it does
 not address some core problems which would need to be solved in order
 to successfully migrate that state. These problems are topology
 discovery (i.e. locating the correct middleboxes), and generating
 triggers.

Gu, et al. Expires February 28, 2013 [Page 21]

Internet-Draft Middlebox State Migration August 2012

Authors’ Addresses

 Yingjie Gu
 Huawei

 Phone: +86-25-56624760
 Fax: +86-25-56624702
 Email: guyingjie@huawei.com

 Melinda Shore
 No Mountain Software
 PO Box 16271
 Two Rivers, AK 99716
 US

 Phone: +1 907 322 9522
 Email: melinda.shore@nomountain.net

 Senthil Sivakumar
 Cisco Systems
 7100-8 Kit Creek Road
 Research Triangle Park, NC
 US

 Email: ssenthil@cisco.com

Gu, et al. Expires February 28, 2013 [Page 22]

