Random CNAMEs

draft-rescorla-avtcore-6222bis-00

IETF 85

Eric Rescorla
Ali Begen
Background: RFC 6222 Algorithm for per-session CNAMEs

- Compute SHA-256 digest of the following values
 - The current time in 64-bit NTP format
 - An EUI-64 or 48-bit MAC address [RFC4291].
 - The initial SSRC and source and destination address/port quartets
- Take the least-significant 96-bits
Linkage Threat Model

- Alice calls Attacker from anonymous phone X
 - For instance, from a domestic violence shelter
- Attacker wants to find where Alice is calling from
 - Tries candidate phones $C_1, C_2, C_3...C_n$
 - Looks for a match with X
- SRTP does not help here
 - Because you are calling the attacker
But 6222 specifies new CNAMEs for each session...

- Not enough entropy in the input space
 - SSRC is known (on wire)
 - MAC is fixed but unknown but vendor-scoped (20 – 32 bits)
 - NTP time known to within a few bits from RTCP timestamp (10 bits of entropy)
 - Host and port likely either known (public) or one of a small number of internal addresses (0 – 7 bits) of entropy

- Given SSRC 1, attacker searches input space to find the MAC
- Given SSRC 2, attacker searches the non-MAC portions to see if the output matches

- Approximate work factor (low end) 20 – 30 bits
Proposal: Random CNAMEs

- Just generate a random value no less than 96-bits
 - Encode as in RFC 6222
- This is indistinguishable from RFC 6222 (without a lot of effort)
 - Because CNAME is just hashed
 - No change to the other side
- Biggest challenge is having a good CSPRNG
 - Already required for TLS, ICE, SIP To/From tags
- This algorithm replaces the previous algorithm in Section 5 of RFC 6222
- New draft: draft-rescorla-avtcore-6222bis-00
Ready for adoption?