Diameter Overload Control
Mechanism

draft-roach-dime-overload-ctrl-00
Adam Roach

adam@nostrum.com



MECHANISM OVERVIEW AND
HIGH-LEVEL DESCRIPTION



Mechanism Overview

Operates on a hop-by-hop basis

— For the most part, at least. Agents have the ability to report load and
overload for contexts that correspond to upstream constructs, such as
hosts, realms, and applications.

Extensible Load Shedding Algorithms

— Initially defined with “drop” algorithm (similar to SIP overload
mechanism)

Information piggybacks on any existing Diameter request/response
pair
— Including DWR/DWA (watchdog) messages, to allow exchange of load
state during on otherwise quiescent connections.
Overload information conveyed in compound AVP

— Contains overload capabilities negotiation, load and overload metrics
(including period of validity), load shedding algorithm to be used,
scope for which the information is valid.



Why Hop-by-Hop?

“The main problem of end-to-end overload
control is its inherent complexity, since [clients
or] servers need to monitor all potential paths
to a destination in order to determine which
requests should be throttled and which requests
may be sent. Even if this information is
available, it is not clear which path a specific
request will take.” (RFC 6357, section 5.2)



Why Message Piggybacking?

 Based on REQ 14: “The mechanism SHOULD
provide for increased feedback when traffic levels
increase. The mechanism MUST NOT do this in
such a way that it increases the number of
messages while at high loads.”

e Adding a new application (for example) would
require an increase in message load to
communicate overload.

* If we decide to avoid piggybacking, the only
viable other option appears to be definition of a

new application.



New AVPs

Overload-Info-Scope — 1 or more per Load-Info

— Indicates scope for which information is valid. (See next slide for discussion of “scope” concept)
Supported-Scopes — Only in CER/CEA messages

— Indicates scopes the sender can support
Overload-Algorithm — Only in CER/CEA messages

— The algorithm to be used by the client to shed load. By default, includes base “message loss”
algorithm.

Overload-Metric — exactly 1 per Load-Info
— Algorithm-specific indicator of the degree of overload; used as input to the algorithm behavior.
— Should be the first AVP in “Load-Info”
Load — Mandatory, can appear once per Load-Info
— Indicates an abstract “load” metric
Period-of-Validity — Required if Overload-Metric is non-zero
— Indicates how long the recipient should act on the overload control metric
Session-Group — optional; may only appear in first request and/or first response in session
— Assigns the session to a Session Group (explained later) which can be used in scope tag



Overload Scopes

In normal operation, a Diameter node may be congested for
some but not all possible requests.

For example, an agent that supports more than one realm
may route traffic to one set of servers for realm A, and
another for realm B. If the realm A servers are congested but
realm B servers are not, then the agent is effectively
congested for realm A but not for realm B.

Similar situations may arise in servers that need to make use
of external resources for certain applications but not for
others.

The Overload-Info-Scope AVP allows a node to indicate a
subset of requests to which load and overload information
should be applied.



Overload-Info-Scope AVP

* Can specify seven scopes for overload information:
Destination-Realm — Applies to the indicated realm
Application — Applies to the indicated application
Destination-Host — Applies to the indicated Destination-Host
Host — Applies to messages sent directly to the indicated host

ok w e

Connection — Applies to the connection on which the indication is
sent

o)

Session Group (see later slides)

7. Session — Feedback applies to the session(s) indicated. Only relevant
when topology hiding is being used.

* If atransaction falls within more than one scope, the “most congested”
scope is used for traffic shaping (proposal to reword: “scope that would
result in the greatest traffic reduction”)



Session Group Example (1/2)

e Consider a system in which the
Server A Server B Diameter client is servicing a
Business Customers Residential Customers mixed community of users (e. g.,

business accounts and residential
acounts)
The client does not know which
category users belong to.
 The Agent is able to steer
Agent requests to the appropriate

Diameter server based on
provisioned information.

* |f Server B becomes overloaded,
the Agent would ideally report
congestion to the client in a way

g that does not impact traffic to
Client server A.




Session Group Example (2/2)

Server B

Residential Customers

Server A

Business Customers

\ /

Agent

Client

Whenever the Agent is
involved in the establishment
of a new session, it includes a
“Session Group” AVP

— For example, it can use a

session group of “1” for server
A, and “2” for Server B.

Then, when Server B becomes
overloaded, it can report
overload to the client in a
context of “Session Group 2”
— This causes clients to change
the amount of traffic they send
in sessions that terminate on
Server B without impacting

sessions that terminate on
Server A.



Supported-Scopes AVP

* Unsigned64

* Contains bitmap indicating which scopes a
node can receive
— Does not indicate what that same node might
send
* New scopes are defined in additional
extensions (IETF docs, other SDO publications)



Overload-Algorithm AVP

e Enumerated

e Sent during capabilities exchange to negotiate
which (single) overload-control algorithm will
be used for the duration of the connection

* Document specifies “drop,” modeled on draft-
ietf-soc-overload-control.



Overload-Metric AVP

Jnsighed32
ndicates level of overload

nterpretation is based on actual algorithm
negotiated at connection establishment



Load AVP

Unsigned32, range 0-65535

Based on the assumption that a system works better if
it can avoid overload rather than simply react to it.

Added to all messages

Algorithm used to generate metricis left to
implementors

— Should generally reflect utilization of most constrained
resource
— Should be a linear representation of such utilization

— ldeally, is a rolling-average load to prevent wild
fluctuations




Why Load AVP in All Messages?

* Intended to reduce load on message recipients,
by allowing periodic sampling of packets.

 The other option —sending Load AVP only when
Load changes — requires recipients to examine
the Load-Info AVP in all messages due to the

possibility of Load being present.

* We presume that appending a non-changing AVP
to a message is a cheaper operation than finding
and parsing a sub-AVP, and optimized
accordingly.



Example Use of Load

e Consider a client with three choices

ServeroB of a server to connect to, with DNS
Load = 40% SRV weights as shown in the table.
* Each server has communicated load
Server A Server C information as shown.
Load = 10% Load = 80% * Theclient can apply loading
information to the SRV weights as
follows:

— A:90%x20=18
— B:60%x20=12
— C:20% x60=12
* The client then distributes load

Client according to this 18/12/12 metric
(e.g., 43% of traffic goes to A; 28.5%
goes to each of B and C)

* Note that this isn’t specific to DNS,

Server | SRV el and could by applied to any capacity
B 20 weighting information
C 60




Period-of-Validity AVP

Unsigned32

Indicates number of seconds the current
overload metric should be applied.

— Unless the metric is replaced by a subsequent
message.

May be refreshed by a subsequent message to
prevent expiration.

Upon expiration, any associated overload
condition is considered to have ceased.

Does not apply to “Load” AVP

— Loads are valid until updated.



Session-Group AVP

UTF8String (i.e., human-readable)

|dentifies a group of sessions independent of
other protocol constructs (realms, hosts, etc.)

Assigns the session to server-selected arbitrary
context that can be reported on independently
from applications, realms, etc.

Appears only in initial exchange within a session

Cannot be changed during the course of a
session.



Why Can’t we Fail Non-Controlled
Connections?

* The mechanism does not include any way to
require the use of overload. If negotiation of
the mechanism fails, the connection proceeds
normally, without any overload control.

 This is done to allow for incremental
deployment of the mechanism, rather than

requiring a “flag day” on which all nodes
switch over.

* This is also required by REQ_16.




OPEN ISSUES



Open Issue 1: SCTP Stream Scope?

* Currently define seven scopes:
— Destination-Realm
— Application-ID
— Destination-Host
— Host
— Connection (including SCTP associations)
— Session-Group
— Session
* |s there value to adding a scope for SCTP streams

within an association? This isn’t difficult to do,
but we have not yet identified use cases for it.



Open Issue 1a: Scope Optionality

e Currently, only “Connection” scope is MUST

e Several are SHOULD:

— Destination Realm
— Application-ID

— Destination-Host
— Host

* Two are MAY:

— Session
— Session-Group



Open Issue 2: Valid Scope

Combinations?

1*(Destination-Realm) 0*1(Application-ID)
1*(Application-ID) 0*1(Destination-Realm)
1*(Application-ID) 0*1(Destination-Host)
1*(Application-ID) 0*1(Host)
1*(Application-ID) 0*1(Connection)
1*(Destination-Host)

1*1(Host) o 1*1(Connection)
1*(Session-Group) 0*1(Host | Connection)
1*(Session) 0*1(Host | Connection)

Is this the right set?




Open Issue 3: Sequencing

* SOCincludes a “sequence” parameter to allow
proper handling of re-ordered messages.

* Diameter is over connection-oriented
transports (SCTP or TCP), which prevents
reordering within a connection/stream

* However, it is possible to have multiple
connections/streams between nodes. Do we

need to add sequence numbers to handle
this?



Open Issue 4: ‘O’verload Bit Handling

* Currently set if the message indicates a need
to throttle traffic being sent (cleared
otherwise).

e Suggestions have been made to set the bit
only in those messages for which a material
change (e.g., enter overload, leave overload,
overload metric changes by more than a
certain amount), so as to reduce the amount
of processing required.



Open Issue 5: Security

* There are certainly other security items to

consider than those presently called out in the
draft. This slide is being included mostly to call
this open issue out for further scrutiny; |
doubt we can have much useful conversation
face-to-face.




Open Issue 6: Algorithm Registration
Policy

* Current document proposes “Specification
Required” (as per RFC 5226, section 4.1).

* This allows new algorithms to be defined in
any “permanent and readily available public
specification.”

e |sthat what we want? See RFC 5226 for other
possibilities.



Open Issue 7: Overload Scope Registry

e Exactly the same as the previous slide, but for
overload scopes rather than overload
algorithmes.



