Diameter End-to-End
Security: Keyed Message
Digests, Digital Signatures,
and Encryption

draft-korhonen-dime-e2e-security-01
Jouni Korhonen, Hannes Tschofenig
Dime WG, IETF#85

QD>

1l ETF

Overview

e Background
e Requirements
e Strawman solutions proposal

e Two aspects:

Authentication and Key Exchange
Actual AVP protection

e Changes from -00 to -01

M s e

1l ETF

\
§//

1l ETF

Background

e Diameter has no end-to-end security framework at
the moment. Acknowledged in RFC 6733.

e Folks deploying (=telco camp e.g., 3GPP and
GSMA) large Diameter networks for roaming
purposes realized that their security assumptions
are not met. Solutions are needed now!

e Bilateral site-to-site VPNs with all your roaming
partners does not scale in a long run and one loses
the possible benefits of 3™ party “roaming proxies”.

M s e

1l ETF

Requirements

e Provide end-to-end security properties to Diameter on top of
existing hop-by-hop security model.
End-to-end is between two nodes with any number of intermediates in
between. This allows “site-to-site” type of deployments as well.

e Works with existing request routing and through proxy agents.
e Decouple key management from end-to-end AVP protection.
e Offer both integrity and confidentiality protection.

e Easy to integrate into existing Diameter applications (integrity
protection).

Requirements — two ~B0%
deployment cases 1 ETF

Site-to-site

Realm example.com Realm example.net
/«/_\/-\ Roaming network //\/_\
Diameter Node Edge Agent Ed Diameter Node
X e Agent X
NOT security E2E security E2ISEJ se (;qu rity NOT security
Aware Aware Aware

Aware
Protected AVPs)
>
< End-to-end protection over this path

End-to-end

Realm example.com Realm example.net
Roaming network
Diameter Node Diameter Node
E2E security E2E security
Aware Aware
Edge Agent Edge Agent

e
Protected AVPs
AN

&
_/

>
NZ End-to-end protection over this path _/

Strawman Proposal in Mo s

1 ETF
draft-korhonen-dime-e2e-security-01

e This solution focuses on protecting Diameter AVPs. To offer the
functionality two AVPs are defined:
Signed-Data (octet string) for integrity protection of one or more AVPs.
Encrypted-Data (octet string) for confidentiality protection of one or more AVPs.

e We selected JSON-based approach:
JSON Web signature (JWS) for integrity protection.
JSON Web Encryption (JWE) for confidentiality protection.
Encoding is “Diameter friendly” — not JSON style text strings.
Reuses JSON IANA registries.

e Not tied to a specific Diameter application.

e Authentication and key management is not part of this proposal:

Likely that “one size fits all” approach will not work due to different deployment
environments

S
Signed-Data AVP PR

e The AVP carries JSON Web Signature (JWS) of one or more of
AVPs. Each protected AVP is hashed and the hash is included
into the JWS payload.

e Hashed AVPs are linked to “originals” using their AVP Code. If
there are multiple instances of the same AVP, you hash them all
and do one by one verification -> allows for rearranging AVPs
and detection of addition/removal/modification of AVPs.

e Both JWS Payload and signature use the same hash algorithm
of the cryptographic algorithm indicated in the JWS Header.

e Can be included into existing Diameter applications.

S
Encrypted-Data AVP PR

e The AVP carries JSON Web Encryption
(JWE) data structure and the JWE Payload
embeds of one or more protected AVPs.

e Cannot be used with existing Diameter
applications since encrypted AVPs are
embedded inside the Encrypted-Data AVP(s).

M s e

1l ETF

Error Handling

e Iransient failures

DIAMETER_KEY_UNKNOWN - A Signed-Data or an Encrypted-Data
AVP is received that was generated using a key that cannot be found in

the key store. To recover a new end-to-end key establishment procedure
may need to be invoked.

DIAMETER_HEADER_NAME_ERROR (TBD12 — This error code is

returned when a Header Parameter Name is not understood in the JWS-
Header AVP or in the JWE-Header AVP.

e Permanent failures

DIAMETER DECRYPTION ERROR - This error code is returned when
an Encrypted-Data AVP is received and the decryption fails for an
unknown reason.

DIAMETER SIGNATURE ERROR - This error code is returned when a

Signed-Data AVP is received and the verification fails for an unknown
reason.

M s e

1l ETF

Changes from -00 to -01

e Clarification that both end-to-end and site-to-
site approaches are in scope.

e Reworked the encoding of protected AVPs.
They are now more Diameter like and
compact. Still using JSON framework.

e New DIAMETER HEADER NAME ERROR
error code added.

QD>

1l ETF

Example of signature..

Signed-Data ::= < AVP Header: TBD1l >
{ JWS-Header }

* { JWS-AVP-Payload }
{ JWS-Signature }
[

AVP]
The JWS Header used in this example is:

{ll typ" : n JWT n ,
"alg":"HS256",
"kid":"abcl23"

}

Signed-Data Grouped AVP:
0x00000nnn // Signed-Data code 'nnn’
0x000000e8 // Flags=0, Length=232(8+49+3+44+44+44+40)

JWS Header encoded into the JWS-Header AVP:
0x00000xxx // JWS-Header code 'xxx'’

0x00000031 // Flags=0, Length=49
"{"typ":"JWT","alg":"HS256","kid":"abc123"}"' // 41
0x00,0x00,0x00 // 3 octets padding

JWS Payload encoded into three JWS-AVP-Payload AVPs:

0x00000zzz // JWS-AVP-Payload code 'zzz' <-——+
0x0000002¢c // Flags=0, Length=44 |
0x00000107 // 263, Session-Id, 4 octets |
0Oxca8362ed,0x69a32ffb // 256 bits hash of |
0x9092ca98,0x745239da // Session-id |
0x6960af73,0x6386bc38 |
0x407e518b,0xe4760548 |
0x00000zzz // JWS-AVP-Payload code 'zzz' |
0x0000002¢c // Flags=0, Length=44 |
0x00000108 // 264, Origin-Host, 4 octets |
0x64b52al15,0xa75a8157 // 256 bits hash of |
0x151993a6,0xb9839866 // Origin-Realm |
0x3b94afa3,0x85568552 |
0x46602ccc,0x3£9d9a77 |
0x00000zzz // JWS-AVP-Payload code 'zzz' |
0x0000002¢ // Flags=0, Length=44 |
0x00000128 // 296, Origin-Realm, 4 octets |
0x3c7¢c0bl17,0x4alc58d0 // 256 bits hash of |
0xdc2844a3,0x28580385 // Origin-Realm |
0x25eb08b0,0xeb20c941 // |
0xcd52f74c,0xf55ae%9ab // <--+

JWS Signature encoded into the JWS-Signature AVP:
0x00000yyy // JWS-Signature code 'yyy’
0x00000028 // Flags=0, Length=40
0x70ec221e,0xe0300ecl,0xb7ce968d,0x6ecb6ad9e
0x8afbe983,0x2b0e331c,0x2elf5lac,0x£f9af0188

1l ETF

Individual
AVP hash

Signature
= over this
binary blob

M s e

1l ETF

Questions? Comments?

e First: is the end-to-end AVP protection
framework approach feasible (forget JSON
at this point)??

e Second: is reusing JSON ideas a feasible
approach (forget encoding detalils at this
point)??

e Third: does the WG think this I-D is a good
starting point??

