Model Based Metrics

draft-mathis-ippm-model-based-metrics-00.txt

Matt Mathis
mattmathis@google.com

IETF 85 IPPM
6-Nov-2012
Bulk Transport Capacity

- Expected single stream TCP performance
 - What is realistic share of the network under load?
- NOT
 - Maximum raw capacity
 - E.g. if all other traffic gives way
 - Typical of multiple concurrent connections
 - Available capacity (idle or head room)
 - E.g. if measurement traffic gives way
- This was one of the main motivations for IPPM
 - BOF at IETF 32 (April 1995)
 - Known to be a very hard problem
 - Hints in the Charter, RFCs 2330 and 3148
BTC is hard for a reason

- TCP and all transports are complicated control systems
 - TCP causes self inflicted congestion
 - Governed by "equilibrium like" behaviors
 - Changes in one parameter are offset by others
- Every component effects performance
 - All sections of the path
 - End systems & middle boxes (TCP quality)
 - Routing anomalies and path length
- The Meta-Heisenberg problem
 - TCP "stiffness" depends on RTT
 - The effects of "shared congestion" depend on
 - Bottlenecks and RTT of the other cross traffic
 - Can't generally measure cross traffic with 1 stream
A another way to do BTC

- Need to "open loop" TCP
 - Prevent self inflicted congestion
 - Prevent circular dependencies between parameters

- Independently control traffic
 - Defeat congestion control (generally slow down)
 - Measure path properties section by section
 - Compare to properties required per models
 - E2E paths passes only if all sections pass all tests
An example

- Goal: 1 MByte/s BTC over a path that is
 - 10 Mb/s raw capacity (~1.2 MByte/s)
 - 20 ms, 1500 Byte MTU
 - Invert TCP performance model [MSMO97]
 \[
 Rate = \left(\frac{MSS}{RTT} \right) \frac{C}{\sqrt{p}}
 \]
 - Yields loss probability budget less than 0.3%
 - Test each short section at 1 MByte/s
 - Fails if total loss probability is more than 0.3%
 - But passing this test is not sufficient
 - Because the link can still fail in other ways

- This is a pass/fail test, not a measurement
The pieces (simplified)

End-to-end path determines target_RTT and target_MTU

The "application" determines target_rate

Rest of path is assumed to be effectively ideal

Sub-path under test
Must meet constraints determined by models based on target_rate, target_RTT and target_MTU
Additional parameters

- Per sub-path
 - subpath_RTT and subpath_rate
- "run_length" number of packets between losses
 - e.g. 1/p
- Support for derating
 - Allow some parameters to be relaxed
 - Some models are overly conservative
 - Also a migration/bootstrapping strategy
Common Calculations

- **target_pipe_size** = target_rate * target_RTT / target_MTU
 - The # of packet to reach the knee

- **reference_target_run_length** = \((3/2)(\text{target_pipe_size}^2)\)
 - The conservative # of packets between losses

- **target_run_length** = [Documented alternate model]
 - More pragmatic target run length
Property 1: CBR loss rate

- Send traffic at specified target_rate
 - measured_run_length > target_run_length
- Also support stealth mode e.g.
 - Send at 1% of target rate, monitor run_length
- To use TCP, clamp cwnd to control the rate
 - Use RFC 4898, etc to measure loss probability
 - Test is "inconclusive" if rate is not accurate
 - (If fail, then buggy TCP's cause false fails)
Property 2: Queue burst capacity

- **Slowstart burst test:**
 - Send target_pipe packets
 - At a rate $2 \times \text{subpath_rate}$
 - Observed run_length < (derated)target_run_length
 - (Otherwise slowstart exits prematurely)

- **NIC TSO burst test:**
 - Send MIN(42, target_pipe) packets
 - At server interface rate (e.g. 10 Gb/s)
 - Observed run_length < (derated)target_run_length
 - (Otherwise ubiquitous TSO suffers)

- May need other burst size/rate scales too
 - e.g. TCP restart after idle
Property 3: Stable at onset of congestion

- Must be well behaved at the onset of congestion
 - Gradual onset of queueing delay and/or
 - Gradual onset of loss (e.g. AQM)

- See for example:
Queuing example (From "Windowed Ping")
Additional test: Cross traffic/unidentified load

- E.g. Bots or viruses contaminating measurements
- SNMP using "trigger" technique from: B. Tierney et al, "Self Configuring Network Monitor (SCNM)"
 - UDP packet containing a "magic" pattern
 - Causes a SNMP report back to the sender
- Many other techniques might be possible
Possible additional tests

- Packet Reordering
 - But (I think) TCP should be more tolerant
 - "Equal cost multipath routing" should be ok
- Metrics to support Real Time
 - See the rmcat charter's mention of IPPM
 - Probably in a different document
Derating and Calibration

- Future draft will present multiple TCP models
 - Allow CUBIC and other TCP variants
 - Allow for (limited) multiple TCP streams
 - This is not without cost
 - Would be taken as a signal that this is ok
- Future section on calibration
 - Validate E2E performance with derated parameters
 - With a network infinitesimally failing all tests
 - (Think epsilon-delta proof, except a measurement)
- Address the failure cases
 - Paths that pass all single property tests, but fail E2E
The goal

Patterned after NPAD/Pathdiag

The tester can be almost anywhere (closer than target_RTT)

The "core" portion of the path should not effect the results.

Minimal instrumented discard service

Sub-path under test

Must meet constraints determined by models based on target_rate, target_RTT and target_MTU