Interface to The Internet Routing System (IRS)

Framework documents

Joel Halpern

IETF 84 – Routing Area Open Meeting
Drafts included

draft-atlas-irs-problem-statement-00
draft-ward-irs-framework-00
draft-atlas-irs-policy-framework-00
draft-dimitri-irs-arch-frame-00

Draft authors: Alia Atlas, Thomas Nadeau, David Ward
Susan Hares, Joel Halpern
Dimitri Papadimitriou Martin Vogoureux
Wouter Taverneir, Didier Cole

IETF 84 – Routing Area Open Meeting
What’s the Problem?

• Applications Need To *Dynamically*
 – And Knowledgeably, based on:
 • Topology (active & potential)
 • Events
 • Traffic Measurements
 • Etc.
 – *Augment* Routing, based on:
 • Policy
 • Flow & Application Awareness
 • Time & External Changes
What’s Needed for the Routing System?

• Data Models for Routing & Signaling State
 – RIB Layer: unicast RIBs, mcast RIBs, LFIB, etc.
 – Protocols: ISIS, OSPF, BGP, RSVP-TE, LDP, PIM, mLDP, etc.
 – Related: Policy-Based Routing, QoS, OAM, etc.

• Framework of Integrating of External Data into Routing
 – Indirection, Policy, Loop-Detection

• Filtered Events for Triggers, Verification & Learning Changed Router State

• Data Models for State
 – Topology model, interface, Measurements, etc.

• Device-Level and Network-Level Interface & Protocol(s)
Main Concerns

1) Standard data-models
 - clear self-describing semantics
 - Sufficient coverage for use-cases needing feedback

2) Applications aren’t routers – so can’t need to implement a list of routing/signaling protocols

3) Good security, authorization, & identity mechanisms

4) Scaling and responsiveness:
 - Multiple applications
 - Many operations per second
 - Significant data to export, even when filtered
IRS Framework at IETF 84

- Application
- IRS Client
- IRS Protocol
- IRS Agent
- Router
- Policy Database
- Topology Database
- Subscription to Events and Configuration Templates for Measurement, Events, QoS, OAM, etc...
- Routing and Signaling Protocols
- RIB Manager
- FIB Manager and Data Plane
3 Key aspects - P.A.L.

• **Programmatic interface** – asynchronous and fast

• **Access to information** – IRS gives access to information and state that is not usually configured or modeled.

• **Learn additional filtered Events**
IRS Interface Key Aspects

- Multiple Simultaneous Asynchronous Operations
- Configuration - is not reprocessed
- Duplex Communication
 - Asynchronous, Filtered Events
 - Topologic Information (IGP, BGP, VPN, active/potential)
- High-Throughput
- Highly Responsive
- Multi-Channel (readers/writers)
- Capabilities Negotiation/Advertisement (self-describing)
What IRS is not

IRS is **NOT**:

- the only configuration mechanism a router will ever need,
- a direct replacement for existing routing/signaling protocols,
- the only way to read topology and router data that will ever be needed,
- solely limited to a single network device.
IRS: Focused Scope

• Start with a defined scope:
 – Small set of data-models (RIB layer) for control
 – Set of events to support related use-cases
 – Data-model for topology
 – Investigate protocol options for the interface
 • Consider application-friendly paradigms
 • Consider extensions as well as new definitions
 – Define set of motivating use-cases to drive this scope.
Policy Definitions

- **Identity**
 - Not tied to a single channel
 - One per commissioner
 - One per agent
- **Role**
 - Each commission has a security role
- **Scope** - what I can read
- **Influence** – what I can write
- **Resources**
 - what agent can consume
 - Example: # of installs, # of events, # operations
- **Policy** – explicit and implicit
 - Explicit: what you configure
 - Implicit: What’s implied in protocols or “doing the right thing” in configuration

Policy Actions

- **Connectivity**
 - No need for active connection
- **State**
 - Tied to Actions such as get this topology;
- **Priority**
 - Commissioner gives 3 tasks:
 - pull routes,
 - status on interface 2,
 - turn on interface 3
 - What’s the order
- **Precedence Decisions**
 1. Assume configured a route 192.165.2/24
 2. Multiple people use IR to move traffic for 192.165.2/24 short term
 - Who gets to install
 - what happens when they get done
 - What happens on a reboot
Q&A
Why Policy Framework

• Help to take Use cases → Data Models
 – What is the scope and influence policy specified for a data model?
 – How does implicit policy in associated routing system effect what IRS can do?
 • AKA - Don’t break implied policy
 – What explicit policy does model need?

• Why: KISS approach (Keep it simple stupid)
 – Best default – because complexity costs

• Some IRS may require
 – 3 phase commit or Time related commits