Broadband Internet Performance: A View from the Gateway

Srikanth Sundaresan, Walter de Donato, Nick Feamster, Renata Teixeira, Sam Crawford, Antonio Pescapè

Georgia Tech
University of Napoli
CNRS/UPMC Sorbonne Universités
SamKnows

What Affects Broadband

Business Day

- Notion of performance is fuzzy
 - What metrics should we measure?
 - How to measure them?
- Important for regulators, consumers, ISPs, content providers
 - 500ms delay causes 20% decrease in Google search traffic

Accurate Measurements are Difficult

End host measurements are not continuous, and affected by confounding factors

The Case For the Gateway

Gateway enables periodic measurements, and can account for confounding factors

The Deployments

- Breadth: The FCC/SamKnows study
 - 7,800 gateways, 18 ISPs, multiple service plans
- Depth: The BISmark study
 - 120+ gateways in 28 countries worldwide, periodic and on-demand measurements

Results: Overview

Throughput:

- Depending on technique, results can vary up to 25%
- Traffic shaping varies across users, affects results

• Latency:

- Access link characteristics introduce loss/latency/ throughput trade-offs
- Modem buffers can induce latencies up to 10 seconds
- Application Performance Web:
 - Latency becomes bottleneck beyond 16 Mbits/s

Results: Overview

• Throughput:

- Depending on technique, results can vary up to 25%
- Traffic shaping varies across users, affects results

Latency:

- Access link characteristics introduce loss/latency/ throughput trade-offs
- Modem buffers can induce latencies up to 10 seconds
- Application Performance Web:
 - Latency becomes bottleneck beyond 16Mbits/s

Interpreting Throughput Results

Different techniques measure different aspects of throughput

Traffic Shaping: PowerBoost

- Cable companies advertise "PowerBoost"
 - Short bursts of high bandwidth
- Non-existent in DSL

Traffic Shaping Varies Across Users

Short-term throughput significantly different from sustainable throughput

Results: Overview

- Throughput:
 - Depending on technique, results can vary up to 25%
 - Traffic shaping varies across users, affects results
- Latency:
 - Access link characteristics introduce loss/latency/ throughput trade-offs
 - Modem buffers can induce latencies up to 10 seconds
- Application Performance Web:
 - Latency becomes bottleneck beyond 16 Mbits/s

Latency Measurements

Parameter	What it captures
End-to-end	Latency to nearby server
Last-mile	Latency to edge of ISP network
Under Load	Buffer delays due to cross traffic

Impact of Last-mile on Latency

DSL last-mile latencies can be very high – 20% of users > 40ms for some ISPs

DSL Interleaving Affects Latency

Fastpath vs. Interleaved last-mile data path

Fastpath sends data in order, can recover from single losses

Fastpath is susceptible to bursty loss

Interleaving sends data out-of-order, can recover from bursty loss

Example: Latency-Throughput Tradeoff

Both users have same service plan

Interleaving decreases loss, increases latency, improves throughput

Interleaving creates a trade-off between latency and throughput

Modem Buffers are Too Large

Service plans can interact badly with modem buffers

Results: Overview

- Throughput:
 - Depending on technique, results can vary up to 25%
 - Traffic shaping varies across users, affects results
- Latency:
 - Access link characteristics introduce loss/latency/ throughput trade-offs
 - Modem buffers can induce latencies up to 10 seconds
- Application Performance Web:
 - Latency becomes bottleneck beyond 16 Mbits/s

Implications: Web Performance

Page load times can exceed 3 seconds – even for popular sites

More Throughput Isn't Everything

Page load times stop improving above about 8-16 Mbit/s

Last-Mile Latency Matters

Page load times increase with last mile latency

Results: Summary

Throughput:

- Depending on technique, results can vary up to 25%
- Traffic shaping varies across users, affects results

• Latency:

- Access link characteristics introduce loss/latency/ throughput trade-offs
- Modem buffers can induce latencies up to 10 seconds
- Application Performance Web:
 - Latency becomes bottleneck beyond 16 Mbits/s

Future Work

- Performance monitoring from the edge
 - Effect of peering on performance
 - Effect of CDN location, traffic engineering on application performance
 - Effect of home wireless networks on performance
- Improve end-host performance
 - How can we minimize the effect of last mile bottlenecks?

http://projectbismark.net http://www.samknows.com

Interested in a BISmark router? Interested in contributing? srikanth@gatech.edu

Previous Studies

- Measurement from outside
 - Dischinger et al [1] initiated measurements from wide area server
 - Indirect measurements, not continuous
- Measurements from inside
 - Endhost based measurements
 - Grenouille [2], Netalyzr [3]
 - Can't account for confounding factors
- [1] Characterizing Residential Broadband Networks IMC 2007
- [2] http://www.grenouille.com
- [3] http://netalyzr.icsi.berkeley.edu Netalyzr: Illuminating the Network Edge IMC 2010