BGP L3VPN origin validation (draft-ymbk-l3vpn-origination-02)

November 2012

Problem Statement

- ☐ It is currently possible for BGP based L3VPN routes to accidentally be sourced in a unintended manner in transit.
 - ☐ This is usually due to unintentional mis-configuration in a transit service provider (SP) resulting in VPN prefixes originating from the transit SP
 - ☐ Malicious attacks are also possible.
- ☐ No mechanism in place to authenticate VPN prefixes in terms of origin validation.
- ☐ The draft (draft-ymbk-l3vpn-origination-02) attempts to define one such scheme.

BGP L3VPN origin validation— Scheme Description

Originator of the VPN route signs BGP update using a secret key ☐ The scheme does not mandate a PKI, though one may be used, and symmetric or asymmetric keys may be used ☐ The originator and validator have a trust agreement where they agree upon a secret key and associated Key Identifier. ☐ Key Identifier is a opaque value used to identify the context of the key in the BGP update. Often the VPN-ID can be used as the Key Identifier. ☐ The signature digest generated from the associated key is carried in a new BGP attribute and is validated at the receiver end by retrieving the key from the key Identifier context and computing the equivalent signature digest.

BGP L3VPN origin validation – BGP extensions

☐ A new optional transitive attribute defined in BGP to carry the

signature digest.

- ☐ Signature digest is generated as
 - ☐ Signature = sign (hash (Prefix/Len | | Key Identifier))
- ☐ Single BGP Prefix per update to maintain integrity of signature.

- Configured with Key Identifier and associated key (secret key (K) agreed upon between CE1 and ASBR2)
- Originates Prefix and signs it with secret key to generate sig. digest -Signature = sign (K) (hash (Prefix || Key Identifier)) carried in L3POA
- BGP update sent single Prefix per update along with PATH attribute

- upon between CE1 and ASBR2)
- 2. Validates BGP Updates from ASBR1 by computing verification digest using secret key (K) corresponding to key ID from BGP update as well as associated Prefix

Verify_Signature = sign (K) (hash (Prefix || Key Identifier in rcvd update))

3. If verify_signature matches signature in PATH attribute the BGP update is classified as valid, else invalid.

BGP L3VPN origin validation — End CE to CE validation

- upon between CE1 and CE2)
- 2. Originates NLRI and signs it with secret key to generate sig. digest -Signature = sign (K) (hash (Prefix || Key Identifier))
 - carried in L3POA attribute
- BGP update sent single Prefix per update along with PATH attribute

- secret key (K) corresponding to key ID from BGP update as well as associated Prefix
 - Verify_signature = sign (K) (hash (Prefix || Key Identifier))
- 3. If verify_signature matches signature in PATH attribute the BGP update is classified as valid, else invalid.

BGP L3VPN origin validation—PE - PE based validation—

- 1. Here PEs, possibly across ASes, agree on the keying.
- 2. The Key Identifier and associated keys would normally be configured on a per VPN basis, with the PE1 signing and PE2 validating similarly
- 3. Here we are protected against route originating from unauthorized PEs.

BGP L3VPN origin validation - Advantages

- Origin validation for common L3VPN scenarios (inclusive of InterAS) – Provider based and CE based validation
- Does not mandate a PKI and can provide for lightweight authentication.
- Only end routers need to be aware of the new mechanism. Intermediate speakers do not need to be aware/upgraded so incrementally deployable