A Framework for L3VPN Performance Monitoring

draft-dong-l3vpn-pm-framework-00

Jie Dong, Zhenbin Li (Huawei)

IETF85 Nov. 2012 Atlanta
Background

- Performance Monitoring (PM) in BGP MPLS L3VPN is desired
 - Meet SLA of services which are sensitive to loss, delay, jitter.
 - Provide operators with visibility to the performance of the VPN network

- Challenges for performance monitoring in existing L3VPN
 - Identifying the source VPN instance of received packets
 - Detailed analyses are provided in accompany draft:
 draft-zheng-l3vpn-pm-analysis-00

- This document describes the framework of providing PM in L3VPN
New concept for L3VPN PM

- VRF-to-VRF Tunnel (VT)
 - point-to-point connection between two VRFs in a VPN
 - VT is used by the egress PE to identify the ingress VRF
 - Essential for PM in L3VPN
Control Plane Mechanisms

• Step1: VPN membership auto-discovery
 – Mechanism similar to BGP AD in RFC 6074
 – PEs obtain VPN membership information of the remote PEs/VRFs

• Step2: VRF-to-VRF Label Allocation
 – PE-1 allocates unique MPLS label for each remote VRF to identify the VRF-to-VRF tunnel
Data Plane Mechanisms

• Packet Encapsulation with VT label

 – Approach 1: additional VT label for Ingress VRF identification

 ![Diagram 1]

 – Approach 2: replace VPN label with VT label

 ![Diagram 2]

• VT label identifies the connection between source VRF and destination VRF
• VPN route lookup in the destination VRF is required
Performance Monitoring in L3VPN

- PM mechanisms in RFC 6374 can be used for L3VPN
 - Loss & Delay measurement
 - Format of source and destination addresses in the Addressing Object are defined for L3VPN
 - source address: (RD + PE address) of source VRF
 - destination address: (RD + PE address) of destination VRF
Next Steps

- Solicit comments & feedbacks
- Revise the draft